
 
Introduction to the  

Theory of Computation

Set 9 — Undecidability

Classes of Languages
We have shown some language falls within
each of the following classes

• Regular
• Context-free
• Decidable
• Turing recognizable

Here we review how to show that a
language is undecidable using proof by
contradiction.

Undecidable Languages

Turing
recognizable

Co-Turing
recognizableDecidable

Undecidable Languages
We can prove a problem is undecidable by

contradiction
• Assume the problem is decidable
• Show that this implies something impossible

The Halting Problem HALTTM

HALTTM = {<M,w> | M is a TM and 
 M halts on input w}
Theorem: HALTTM is undecidable

Proof: (by contradiction)
Show that if HALTTM is decidable then
ATM is also decidable

Proof (1)
Assume R decides HALTTM

Let S be the following TM

S = “on input <M,w>
1. Run R on <M,w>
2. If R rejects, reject
3. If R accepts, 

simulate M on w until it halts
4. If M accepts, accept; 

if M rejects, reject”

Proof (2)
If HALTTM is decidable 

then S decides ATM

Since ATM is not decidable, 
HALTTM cannot be decidable

Proving Language L Is Undecidable
Assume L is decidable

• Let N be a TM that decides L

Show that a known undecidable language L'
will be decidable if it can use N to make
decisions

• This is called reducing problem L' to problem L

Conclude N cannot exist
• That is, the language L is not decidable

Reducibility
If we have two languages (or problems) A
and B, then “A is reducible to B” means that
we can use B to solve A.

• Measuring the area of a rectangle is reducible
to measuring the lengths of its sides

• We showed that ANFA is reducible to ADFA

If A is reducible to B then
• solving B gives a solution to A

Reducibility
Why “reduce”

• When we reduce A to B, we show how to solve
A by using B…
…and can conclude that A is no harder than B

If A is reducible to B then
• solving B gives a solution to A
• B is easy → A is easy
• A is hard → B is hard

Undecidability of ETM
ETM = {<M> | M is a TM and L(M) = ∅}

Theorem: ETM is undecidable
Proof: Assume ETM is decidable with

decider TM R. Use R to decide ATM

 Recall ATM = 
{<M,w> | M is a TM that accepts w}

 How can we use R (which takes <M> as
input) to determine if M accepts w?
Make new TM, M1, with L(M1) ≠ ∅ ⇔ M accepts w

Proof
New TM: Reject everything other than w,

do whatever M does on input w.
M1 = “On input x

1. If x ≠ w, reject
2. If x = w, run M on input w

Ø Accept if M accepts”

L(M1) ≠ ∅ ⇔ M accepts w

Make new TM, M1, with L(M1) ≠ ∅ ⇔ M accepts w

Use R and M1 to decide ATM

Consider the following TM
S = “On input <M,w>

1. Construct M1 that rejects all but w and
simulates M on w

2. Run R on <M1>
3. If R accepts, reject; if R rejects, accept”

S decides ATM — a contradiction

Therefore, ETM is not decidable

L(M1) ≠ ∅ ⇔ M accepts w

Recap
Assume R decides ETM

Create Turing machine M1 such that 
L(M1) ≠ ∅ ⇔ M accepts w

Create Turing machine S that decides ATM
by running R on input M1

Conclude R cannot exist
☞ ETM cannot be decidable

Another Undecidable Language
Let REGULARTM = {<M> | M is a TM and L(M) is a

regular language }

Theorem: REGULARTM is undecidable

Proof: Assume R decides REGULARTM and use R
to decide ATM (reduce the ATM problem to the
REGULARTM problem).

As before, make a new TM, M2, that accepts a
regular language ⇔ M accepts w.

Proof (continued)

M2 = “On input x
1. If x = 0n1n for some n, accept
2. Otherwise, run M on w.  

If M accepts w, accept”

If M accepts w, then L(M2) = Σ*
— A regular language

Otherwise, L(M2) = 0n1n

— Not a regular language

Proof (continued)
Assuming R decides REGULARTM

consider the following TM
S = “On input <M,w>

1. Construct M2 such that  
 L(M2) is regular ⇔ M accepts w

2. Run R on M2

3. If R accepts, accept; 
if R rejects, reject”

S decides ATM ⇔ R decides REGULARTM

Insight
TM M2 is designed specifically so that

L(M2) is regular ⇔ M accepts w

Run TM that decides REGULARTM on M2

Reducibility Recap

To prove some language L is undecidable,
show that any known undecidable language
(such as ATM) is reducible to L

Having shown that
“ATM is reducible to L”

we have shown that
L is undecidable

Course Recap — Goals
Explore the capabilities and limitations of
computers

• Automata theory
• How can we mathematically model computation?

• Computability theory
• What problems can be solved by a computer?

• Complexity theory
• What makes some problems computationally hard

and others easy?

Course Recap
Automata Theory

• Introduced DFA, NFA, Regular Grammar, RE
• Showed that they all accept the same class of

languages
• Introduced CFG, PDA

• PDA is essentially an NFA with a stack
• PDAs and CFGs accept the same class of languages

Course Recap
Computability Theory

• Introduced TM
• Like PDA’s with more general memory model

• Importance of TM
• Church-Turing Thesis
• Any algorithm can be implemented on a TM

• Use the TM model and Church‑Turing Thesis
to understand and classify languages
• Decidable languages
• Undecidable languages
• Recognizable languages
• Unrecognizable languages

Coming Up
Complexity Theory

• Use TM model to determine how long an
algorithm takes to run
• Function of input length

• Classify algorithms according to their
complexity

