Introduction to the Theory of Computation

Set 9 — Undecidability

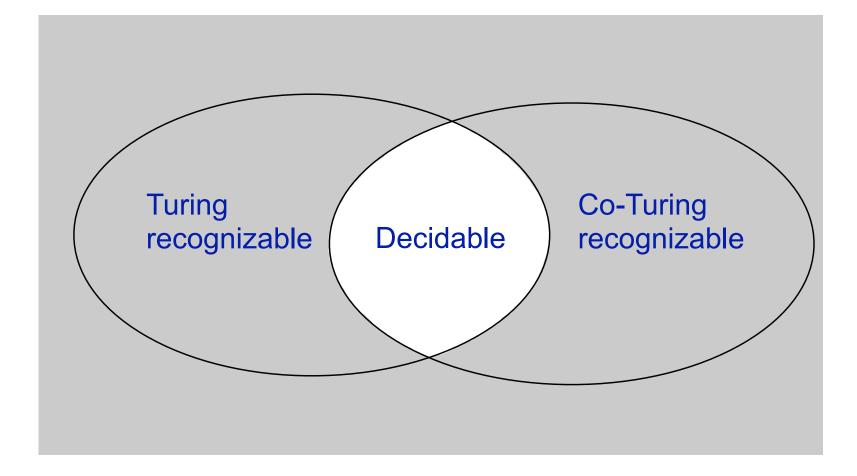
Classes of Languages

We have shown some language falls within each of the following classes

- Regular
- Context-free
- Decidable
- Turing recognizable

Here we review how to show that a language is undecidable using proof by contradiction.

Undecidable Languages



Undecidable Languages

We can prove a problem is undecidable by contradiction

- Assume the problem is decidable
- Show that this implies something impossible

The Halting Problem HALT_{TM} $HALT_{TM} = \{ < M, w > I M \text{ is a TM and } \}$ M halts on input w} **Theorem: HALT**_{TM} is undecidable **Proof:** (by contradiction) Show that if $HALT_{TM}$ is decidable then A_{TM} is also decidable

Proof (1)

- Assume R decides $HALT_{TM}$
- Let S be the following TM
- S = "on input <M,w>
 - 1. Run R on <M,w>
 - 2. If R rejects, reject
 - 3. If R accepts,

simulate M on w until it halts

4. If M accepts, accept; if M rejects, reject"

Proof (2)

If $HALT_{TM}$ is decidable then S decides A_{TM} Since A_{TM} is not decidable, HALT_{TM} cannot be decidable

Proving Language L Is Undecidable Assume L is decidable

Let N be a TM that decides L

Show that a known undecidable language L' will be decidable if it can use N to make decisions

• This is called reducing problem L' to problem L

Conclude N cannot exist

• That is, the language L is not decidable

Reducibility

If we have two languages (or problems) A and B, then "A is reducible to B" means that we can use B to solve A.

- Measuring the area of a rectangle is reducible to measuring the lengths of its sides
- We showed that \boldsymbol{A}_{NFA} is reducible to \boldsymbol{A}_{DFA}
- If A is reducible to B then
 - solving B gives a solution to A

Reducibility

Why "reduce"

- When we reduce A to B, we show how to solve A by using B...
 - ...and can conclude that A is no harder than B

If A is reducible to B then

- solving B gives a solution to A
- B is easy \rightarrow A is easy
- A is hard \rightarrow B is hard

Undecidability of E_{TM} $E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$ **Theorem:** E_{TM} is undecidable **Proof:** Assume E_{TM} is decidable with decider TM R. Use R to decide A_{TM} **Recall** $A_{TM} =$ {<M,w> | M is a TM that accepts w} How can we use *R* (which takes <M> as input) to determine if M accepts w?

Make new TM, M_1 , with $L(M_1) \neq \emptyset \Leftrightarrow M$ accepts w

Proof

New TM: Reject everything other than w, do whatever M does on input w.

- $M_1 = "On input x$
 - **1. If x ≠ w, reject**
 - **2.** If **x** = **w**, run **M** on input **w**
 - Accept if M accepts"
- $L(M_1) \neq \emptyset \Leftrightarrow M \text{ accepts } w$

Make new TM, M_1 , with $L(M_1) \neq \emptyset \Leftrightarrow M$ accepts w

Use R and M_1 to decide A_{TM}

Consider the following TM

- S = "On input <M,w>
 - 1. Construct M₁ that rejects all but w and simulates M on w
 - **2.** Run *R* on $\langle M_1 \rangle$ L(M₁) $\neq \emptyset \Leftrightarrow$ M accepts w
 - 3. If *R* accepts, reject; if *R* rejects, accept"
- **S** decides A_{TM} a contradiction

Therefore, E_{TM} is not decidable

Recap

Assume *R* decides E_{TM}

Create Turing machine M_1 such that L(M_1) $\neq \emptyset \Leftrightarrow M$ accepts w

Create Turing machine S that decides A_{TM} by running *R* on input M_1

Conclude *R* cannot exist

 $\textcircled{} = \mathbf{E}_{\mathsf{TM}}$ cannot be decidable

Another Undecidable Language

- Let REGULAR_{TM} = {<M> | M is a TM and L(M) is a regular language }
- **Theorem: REGULAR**_{TM} is undecidable
- **Proof:** Assume R decides REGULAR_{TM} and use R to decide A_{TM} (reduce the A_{TM} problem to the REGULAR_{TM} problem).
 - As before, make a new TM, M_2 , that accepts a regular language \Leftrightarrow M accepts w.

Proof (continued)

$M_2 = "On input x$

1. If $x = 0^n 1^n$ for some n, accept

2. Otherwise, run M on w. If M accepts w, accept"

- If M accepts w, then $L(M_2) = \Sigma^*$
 - A regular language
- Otherwise, $L(M_2) = 0^n 1^n$
 - Not a regular language

Proof (continued)

Assuming R decides REGULAR_{TM} consider the following TM

- S = "On input <M,w>
 - 1. Construct M_2 such that L(M₂) is regular \Leftrightarrow M accepts w
 - **2.** Run R on M_2
 - 3. If R accepts, accept; if R rejects, reject"

S decides $A_{TM} \Leftrightarrow R$ decides $REGULAR_{TM}$

Insight

TM M_2 is designed specifically so that L(M₂) is regular \Leftrightarrow M accepts w

Run TM that decides REGULAR_{TM} on M_2

Reducibility Recap

To prove some language L is undecidable, show that any known undecidable language (such as A_{TM}) is reducible to L

> Having shown that "A_{TM} is reducible to L" we have shown that L is undecidable

Course Recap — Goals

Explore the capabilities and limitations of computers

- Automata theory
 - How can we mathematically model computation?
- Computability theory
 - What problems can be solved by a computer?
- Complexity theory
 - What makes some problems computationally hard and others easy?

Course Recap

Automata Theory

- Introduced DFA, NFA, Regular Grammar, RE
 - Showed that they all accept the same class of languages
- Introduced CFG, PDA
 - PDA is essentially an NFA with a stack
 - PDAs and CFGs accept the same class of languages

Course Recap

Computability Theory

- Introduced TM
 - Like PDA's with more general memory model
- Importance of TM
 - Church-Turing Thesis
 - Any algorithm can be implemented on a TM
- Use the TM model and Church-Turing Thesis
 to understand and classify languages
 - Decidable languages
 - Undecidable languages
 - Recognizable languages
 - Unrecognizable languages

Coming Up

Complexity Theory

- Use TM model to determine how long an algorithm takes to run
 - Function of input length
- Classify algorithms according to their complexity