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Classes of Languages
We have shown some language falls within 
each of the following classes

• Regular
• Context-free
• Decidable
• Turing recognizable

Here we review how to show that a 
language is undecidable using proof by 
contradiction.
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Undecidable Languages
We can prove a problem is undecidable by 

contradiction
• Assume the problem is decidable
• Show that this implies something impossible



The Halting Problem HALTTM

HALTTM = {<M,w> | M is a TM and 
                                 M halts on input w}
Theorem: HALTTM is undecidable

Proof: (by contradiction)
Show that if HALTTM is decidable then 
ATM is also decidable



Proof (1)
Assume R decides HALTTM

Let S be the following TM

S = “on input <M,w>
1. Run R on <M,w>
2. If R rejects, reject
3. If R accepts, 

simulate M on w until it halts
4. If M accepts, accept; 

if M rejects, reject”



Proof (2)
If HALTTM is decidable 

then S decides ATM 

Since ATM is not decidable, 
HALTTM cannot be decidable



Proving Language L Is Undecidable
Assume L is decidable

• Let N be a TM that decides L

Show that a known undecidable language L' 
will be decidable if it can use N to make 
decisions

• This is called reducing problem L' to problem L

Conclude N cannot exist
• That is, the language L is not decidable



Reducibility
If we have two languages (or problems) A 
and B, then “A is reducible to B” means that 
we can use B to solve A.

• Measuring the area of a rectangle is reducible 
to measuring the lengths of its sides

• We showed that ANFA is reducible to ADFA

If A is reducible to B then
• solving B gives a solution to A



Reducibility
Why “reduce”

• When we reduce A to B, we show how to solve 
A by using B…
…and can conclude that A is no harder than B

If A is reducible to B then
• solving B gives a solution to A
• B is easy → A is easy
• A is hard → B is hard



Undecidability of ETM
ETM = {<M> | M is a TM and L(M) = ∅}

Theorem: ETM is undecidable
Proof:  Assume ETM is decidable with 

decider TM R.  Use R to decide ATM

   Recall ATM = 
{<M,w> | M is a TM that accepts w}  

   How can we use R (which takes <M> as 
input) to determine if M accepts w? 
Make new TM, M1, with L(M1) ≠ ∅ ⇔ M accepts w



Proof
New TM:  Reject everything other than w, 

do whatever M does on input w.
M1 = “On input x

1. If x ≠ w, reject
2. If x = w, run M on input w

Ø Accept if M accepts”

L(M1) ≠ ∅ ⇔ M accepts w

Make new TM, M1, with L(M1) ≠ ∅ ⇔ M accepts w



Use R and M1 to decide ATM

Consider the following TM
S = “On input <M,w>

1. Construct M1 that rejects all but w and 
simulates M on w

2. Run R on <M1> 
3. If R accepts, reject; if R rejects, accept”

S decides ATM — a contradiction

Therefore, ETM is not decidable

L(M1) ≠ ∅ ⇔ M accepts w



Recap
Assume R decides ETM

Create Turing machine M1 such that 
L(M1) ≠ ∅ ⇔ M accepts w

Create Turing machine S that decides ATM 
by running R on input M1

Conclude R cannot exist
☞ ETM cannot be decidable



Another Undecidable Language
Let REGULARTM = {<M> | M is a TM and L(M) is a 

regular language }

Theorem:  REGULARTM is undecidable

Proof:  Assume R decides REGULARTM and use R 
to decide ATM (reduce the ATM problem to the 
REGULARTM problem).

As before, make a new TM, M2, that accepts a 
regular language ⇔ M accepts w.



Proof (continued)

M2 = “On input x
1. If x = 0n1n for some n, accept
2. Otherwise, run M on w.  

If M accepts w, accept”

If M accepts w, then L(M2) = Σ*
— A regular language

Otherwise, L(M2) = 0n1n

— Not a regular language



Proof (continued)
Assuming R decides REGULARTM 

consider the following TM
S = “On input <M,w>

1. Construct M2 such that  
    L(M2) is regular ⇔ M accepts w

2. Run R on M2

3. If R accepts, accept; 
if R rejects, reject”

S decides ATM ⇔ R decides REGULARTM



Insight
TM M2 is designed specifically so that 

L(M2) is regular ⇔ M accepts w

Run TM that decides REGULARTM on M2



Reducibility Recap

To prove some language L is undecidable, 
show that any known undecidable language 
(such as ATM) is reducible to L

Having shown that
“ATM is reducible to L”

we have shown that
L is undecidable



Course Recap — Goals
Explore the capabilities and limitations of 
computers

• Automata theory
• How can we mathematically model computation?

• Computability theory
• What problems can be solved by a computer?

• Complexity theory
• What makes some problems computationally hard 

and others easy?



Course Recap
Automata Theory

• Introduced DFA, NFA, Regular Grammar, RE
• Showed that they all accept the same class of 

languages
• Introduced CFG, PDA

• PDA is essentially an NFA with a stack
• PDAs and CFGs accept the same class of languages



Course Recap
Computability Theory

• Introduced TM
• Like PDA’s with more general memory model

• Importance of TM
• Church-Turing Thesis
• Any algorithm can be implemented on a TM

• Use the TM model and Church‑Turing Thesis 
to understand and classify languages
• Decidable languages
• Undecidable languages
• Recognizable languages
• Unrecognizable languages



Coming Up
Complexity Theory

• Use TM model to determine how long an 
algorithm takes to run
• Function of input length

• Classify algorithms according to their 
complexity


