Introduction to the Theory of Computation

Set 8 — Turing Machines / Decidability

What Is an Algorithm?

Intuitively, an algorithm is anything that can be simulated by a Turing machine (Church-Turing Thesis)

- Many algorithms can be simulated by Turing machines
- Inputs can be represented as strings
 - Graphs
 - Polynomials
 - Automata
 - Etc.

Example Algorithm

Depth-first walk-through of binary tree

- Which nodes do you visit, and in what order, when doing a depth-first search?
 - Visit each leaf node from left to right
 - Recursive algorithm
 - Stop after rightmost leaf node has been visited

Binary Tree Depth-First Walkthrough

- Start at root
- **Process left subtree (if one exists)**
- **Process right subtree (if one exists)**

Process how?

- Print the node name
- If there is a left subtree then
 - Process the left subtree
 - Print the node name again
- If there is a right subtree then
 - Process the right subtree
 - Print the node name again

Example

ABDHDBEIEBACFJFCG

Can a Turing Machine Do This?

Input must be a string (not a tree)

- Can we represent a tree with a string?
- Yes.

String representation of a binary tree

A B C D E F G H # # I J # # # ~

Can a Turing Machine Do This?

Input must be a string (not a tree)

Can we represent a tree with a string?

• Yes

How do we know which node(s) are children of the current node?

- The root node is at index 0.
- The children of node at index n are at indices 2n+1 and 2n+2

What About the Output?

Need to write out nodes in a particular order

- Can we do this with a TM?
- Yes. Add output tape
- A TM can move left and right on the input tape writing to the output tape whenever appropriate

Describing Turing Machines

From now on, we can describe Turing machines algorithmically

Decidability

- A language is decidable if some Turing machine decides it
 - ${\ensuremath{\, \bullet }}$ Every string in Σ^* is either accepted or rejected
- Not all languages are decidable
 - Not all languages can be decided by a Turing machine
 - We will see examples of both decidable and undecidable languages

Showing a Language Is Decidable

Write a decider that decides it

Must show the decider

- Halts on all inputs
- Accepts w ⇔ w is in the language

Can use algorithmic description

DFA Acceptance Problem Consider the language $A_{DFA} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts the} \}$ string w **Theorem:** A_{DFA} is a decidable language **Proof:** Consider the following TM, M M = "On input string <B,w>, where B is a DFA and w is an input to B

- 1. Simulate B on input w
- 2. If simulation ends in accept state, accept. Otherwise, reject."

NFA Acceptance Problem Consider the language $A_{NFA} = \{ \langle B, w \rangle \mid B \text{ is a NFA that accepts the} \}$ string w **Theorem:** A_{NFA} is a decidable language **Proof:** Consider the following TM, N N = "On input string <B,w> 1. Convert B to a DFA C 2. Run TM M shown previously on <C,w> 3. If M accepts, accept. Otherwise, reject." RE Acceptance Problem Consider the language A_{REX} = {<R,w> I R is an RE that generates the string w}

Theorem: A_{REX} is a decidable language

- **Proof: Consider the following TM, P**
- P = "On input string <R,w>
- 1. Convert R to a DFA C (using algorithms discussed in class and in texts)
- 2. Run TM M shown previously on <C,w>
- 3. If M accepts, accept. Otherwise, reject."

Some Decidable Languages $A_{DFA} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts} \}$ input string w $A_{NFA} = \{ \langle B, w \rangle \mid B \text{ is an NFA that accepts} \}$ input string w $A_{RFX} = \{\langle R, w \rangle \mid R \text{ is a regular expression} \}$ that generates string w

Emptiness Testing Problem

Consider the language $E_{DFA} = \{ <A > | A is a DFA and L(A) = \emptyset \}$

- **Theorem:** E_{DFA} is a decidable language
- **Proof:** Consider the following TM, T
- T = "On input string <A>, where A is a DFA
- 1. Mark the start state
- 2. Repeat until no new states get marked
 - Mark any state that has a transition coming into it from any state already marked
- 3. If *no* accept states are marked, accept. Otherwise, reject."

DFA Equivalence Problem $EQ_{DFA} = \{\langle A, B \rangle \mid A \text{ and } B \text{ are DFA's} \}$ and L(A) = L(B)**Theorem: EQ_{DFA} is a decidable language Proof:** Consider the following language $(L(A) \cap L(B)) \cup (L(A) \cap L(B))$

$(L(A) \cap \overline{L(B)}) \cup (\overline{L(A)} \cap L(B))$

$(L(A) \cap \overline{L(B)}) \cup (\overline{L(A)} \cap \underline{L(B)})$

$(L(A) \cap \overline{L(B)}) \cup (\overline{L(A)} \cap L(B))$

 $(L(A) \cap \overline{L(B)}) \cup (\overline{L(A)} \cap L(B))$

L(A) L(B)

$(L(A) \cap \overline{L(B)}) \cup (\overline{L(A)} \cap \underline{L(B)})$

$(L(A) \cap \overline{L(B)}) \cup (\overline{L(A)} \cap L(B))$

 $(L(A) \cap \overline{L(B)}) \cup (\overline{L(A)} \cap L(B))$

DFA Equivalence Problem $EQ_{DFA} = \{\langle A, B \rangle \mid A \text{ and } B \text{ are DFA's} \}$ and L(A) = L(B)**Theorem:** EQ_{DFA} is a decidable language **Proof:** Consider DFA C that accepts $L(C) = (L(A) \cap \overline{L(B)}) \cup (\overline{L(A)} \cap L(B))$

How do we know such a DFA exists?

If $L(C) = \emptyset$, then L(A) = L(B)

TM That Decides EQ_{DFA}

- Q = "On input string <A,B>, where A and B are DFAs
- 1. Create DFA C such that $L(C) = (L(A) \cap \overline{L(B)}) \cup (\overline{L(A)} \cap L(B))$
- 2. Submit C to Turing machine T that decides E_{DFA}
- 3. If T accepts C, accept. Otherwise, reject."

Some Decidable Languages A_{DFA} = {<B,w> I B is a DFA that accepts input string w} A_{NFA} = {<B,w> I B is an NFA that accepts input string w}

A_{REX} = {<R,w> | R is a regular expression that generates string w}

 $E_{DFA} = \{ <A > I A is a DFA and L(A) = \emptyset \}$

 $EQ_{DFA} = \{ <A,B > I A and B are DFA's and L(A) = L(B) \}$

Question

How would we show that the following language is decidable?

 $ALL_{DFA} = \{ <A > I A is a DFA that recognizes \Sigma^* \}$

Another Question

- Let L be any regular language
- How would we show L is decidable?
 - Assume L is described using a DFA

Deciders and CFG's Consider the following language A_{CFG} = {<G,w> I G is a CFG that generates string w}

Is A_{CFG} decidable?

Problem:

How can we get a TM to simulate a CFG? Must be certain CFG tries a finite number of steps!

Solution: Use Chomsky Normal Form

Chomsky Normal Form Review

All rules are of the form

- $A \rightarrow BC$
- A →a
- where A, B, and C are any variables; B and C cannot be the start variable
- $\mathbf{S} \rightarrow \epsilon$
- is the only ε rule; S is the start variable

How Many Steps to Generate w? If IwI = 0 1 step If IwI = n > 0? 2n - 1 steps

TM Simulating A_{CFG}

- M = "On input <G>, where G is a CFG
- 1. Convert G into Chomsky Normal Form
- **2.** If |w| = 0
 - > If there is an $S \rightarrow \epsilon$ rule, accept
 - Otherwise, reject
- 3. List all derivations with 2lwl-1 steps
 - If any generate w, accept
 - > Otherwise, reject"

Empty CFG's

Consider the following language

 $E_{CFG} = \{ \langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset \}$

Theorem: E_{CFG} is decidable

Can we use the TM in A_{CFG} to prove this?

No.

There are infinitely many possible strings in $\boldsymbol{\Sigma}^*$

Instead, we need to check if there is any way to get from the start variable to some string of terminals

Work Backwards

- **B** = "On input <G>, where G is a CFG
- 1. Mark all terminals
- 2. Repeat until no new variables are marked

Mark any variable A if G has a rule $A \rightarrow U_1 U_2 ... U_k$ where $U_1, U_2, ..., U_k$ are all marked

- **X** If S is marked, reject
- ✓ Otherwise, accept"

What About EQ_{CEG?} **Recall for EQ_{DFA}, we considered** $(L(A) \cap L(B)) \cup (L(A) \cap L(B))$ Will this work for CFG's? No. CFG's are not closed under complementation or intersection EQ_{CFG} is *not* a decidable language!

We will see this later

Decidability of CFL's

Theorem: Every context-free language L is decidable

Proof:

For each w, we need to decide whether or not w is in L. Let G be a CFG for L. This problem boils down to A_{CFG} , which we showed is decidable.

Relationship of Classes of Languages

Language Input		
A _{DFA}	<d,w>, D is a DFA, w is a string</d,w>	
A _{NFA}	<n,w>, N is an NFA, w is a string</n,w>	
A _{REX}	<r,w>, R is an RE, w is a string</r,w>	
E _{DFA}	<d>, D is a DFA and L(D) = \emptyset</d>	
EQDFA	<c,d>, C and D are DFA's and L(C) = L(D)</c,d>	
L(R)	R is a regular language	
A _{CFG}	<g,w>, G is a CFG, w is a string</g,w>	
E _{CFG}	<g>, G is a CFG and L(G) = \emptyset</g>	
L(C)	C is a context free language	

Collaborative Exercise — 1 F_{DFA} = {<A> | A is a DFA and L(A) is finite}

Collaborative Exercise – 2

PRIME = { n l n is a prime number}

Collaborative Exercise — 3 CONN = {<G> | G is a connected graph}

Collaborative Exercise – 4 L10_{DFA} = {D | D is a DFA that accepts every string w with IwI = 10} Collaborative Exercise – 5 $INT_{CFG} = \{ < G_1, G_2, w > I G_1 \text{ and } G_2 \text{ are CFGs}$ and w is accepted by both $\}$ **Collaborative Exercise** — 6 INTL_{CFG} = L(G₁ \cap G₂), where G₁ and G₂ are CFGs

Decidable Languages

A language is decidable if some Turing machine decides it

• Every string in Σ^* is either accepted or rejected

Not all languages can be decided by a Turing machine

Turing Machine Acceptance Problem Consider the following language $A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM that accepts } w \}$ **Theorem:** A_{TM} is Turing-recognizable **Theorem:** A_{TM} is undecidable **Proof: The Universal Turing Machine** recognizes, but does not decide, A_{TM}

The Universal Turing Machine

- U = "On input <M, w>, where M is a TM and w is a string:
- 1. Simulate M on input w
- 2. If M ever enters its accept state, accept
- 3. If M ever enters its reject state, reject"

Why Can't U Decide A_{TM} ?

Intuitively, if M never halts on w, then U never halts on <M,w>

This is also known as the *halting problem* Given a TM M and a string w, does M halt on input w?

Undecidable

We may prove this more rigorously later Need some additional tools for proving properties of languages **Comparing the Size of Infinite Sets**

Given two infinite sets A and B, is there any way of determining if IAI=IBI or if IAI>IBI?

Yes!

Functional correspondence can show two infinite sets have the same number of elements

Diagonalization can show one infinite set has more elements than another

Functional Correspondence

- Let f be a function from A to B
- f is called one-to-one if ... $f(a_1) \neq f(a_2)$ whenever $a_1 \neq a_2$
- f is called onto if ... For every $b \in B$, there is some $a \in A$ such that f(a) = b
- f is called a correspondence if it is both one-to-one *and* onto

A correspondence is a way to pair elements of the two sets

Example — Correspondence

Consider f: $\mathbb{Z}^{\geq 0} \to P$, where $\mathbb{Z}^{\geq 0} = \{0, 1, 2, ...\}$ and P = {positive squares} P = {1, 4, 9, 16, 25, ...} f(x) = (x+1)²

Is f one-to-one?

Yes

Is f onto?

Yes

Therefore $\mathbb{Z}^{\geq 0}I = IPI$

Comparing the Size of Infinite Sets

Given two infinite sets A and B, is there any way of determining if IAI=IBI or if IAI>IBI?

Yes!

Functional correspondence can show two infinite sets have the same number of elements

Diagonalization can show one infinite set has more elements than another

Countable Sets

Let $\mathbb{N} = \{1, 2, 3, ...\}$ the set of natural numbers

The set A is countable if ...

- A is finite, or
- |**A**| = |**N**|

Some example of countable sets

- Integers {0,-1,1,-2,2,-3,3,...}
- {x | $x \in \mathbb{N}$ and (x mod 3) = 1} {1,4,7,10,...}
- All positive primes {2,3,5,7,11,...}

The Positive Rational Numbers

Is Q = {m/n I m,n $\in \mathbb{N}$ } countable? Yes

m/n

Is R+ (the set of positive real numbers) countable? No!

n	f(n)		
1	1 <u>1</u> .56439	X = 4.1337	
2	3. <u>2</u> 3891	Λ - Τ.1337	
3	7.4 <u>2</u> 210	Diagonalization	
4	2.22 <u>2</u> 66		
5	0.169 <u>8</u> 2		

The set of real numbers \mathbb{R} is uncountable. Proof by contradiction using diagonalization.

Assume that a correspondence f exists between \mathbb{N} and \mathbb{R} .

Find an x in \mathbb{R} that is not paired with anything in \mathbb{N} .

Construct such an x by choosing each digit of x to make x different from one of the real numbers that is paired with an element of \mathbb{N} , to ensure that $x \neq f(n) \forall n$.

We will construct x to be between 0 and 1, so all significant digits are part of the fractional part following the decimal point.

The set of real numbers ${\mathbb R}$ is uncountable.

To ensure that $x \neq f(1)$ we choose the first digit of x to be anything other than the first fractional digit of f(1). Note that we have a choice of 9 other digits.

To ensure that $x \neq f(k)$ we choose the kth digit of x to be anything other than the kth digit of f(k).

We continue down the diagonal of a table of f(n) values.

We have constructed x so that if is not f(n) for any n, because it differs from f(n) in the nth fractional digit.

Thus we have a contradiction, since x is not paired with a number in \mathbb{N} .

Is R+ (the set of positive real numbers) countable? No!

The Set of All Infinite Binary Strings

Is the set of all (infinite) binary strings countable?

- No
- Diagonalization also works to prove this is not countable

The Set of All Infinite Binary Strings

Is the set of all (infinite) binary strings countable?

- No
- Diagonalization also works to prove this is not countable

On the other hand, the set of finite length binary strings is countable!

- Let $\mathbf{x}_{\mathbf{b}}$ be the binary representation of \mathbf{x}
- f(x) = x_b is a 1-to-1 and onto funetion 1001 N to the set of finite binary strings

The Set of All Binary Strings

Is the set of all binary strings countable?

- No • Discretion works to prove this is n
- Diagonalization works to prove this is not countable

The set of finite length binary strings is countable!

- Let $\mathbf{x}_{\mathbf{b}}$ be the binary representation of \mathbf{x}
- f(x) = x_b is a 1-to-1 and onto function from N to the set of finite binary strings

Is the Set of All Languages in Σ^* Countable?

No

This set has the same cardinality as the set of all infinite binary strings

 $\Sigma^* = \{ \epsilon, a, b, aa, ab, ba, bb, aaa, aab, ... \}$ A = { | a|, | a| ab, | aaa, | ... } $\chi_A = 0 1 0 0 1 0 0 1 0 ...$

The set of all languages in Σ^* is *not* countable

Σ^{\star} vs. Languages in Σ^{\star}

- The set Σ^* *is* countable
 - Let $I\Sigma I = n$
 - Every string in Σ^* can be associated with a unique number, y, in base-(n+1)
 - E.g., if $\Sigma = \{a, b, c\}$, we can associate the string acba with the value $1 \times 4^3 + 3 \times 4^2 + 2 \times 4^1 + 1 \times 4^0 = 121$
 - Let f(x) be the string associated with x

The set of all languages in Σ^* is *not* countable

• It is the *power set* of Σ^*

Is the Set of All TM's Countable?

Yes

Every Turing machine can be represented by a finite length string, so the set of all Turing machines is countable

Theorem: Some languages are not Turing-recognizable

Proof: There are more languages than there are Turing machines

Some Languages Not Turing-recognizable

Theorem: Some languages are not Turing-recognizable

Proof: There are more languages than there are Turing machines

The set of all Turing machines is countable The set of all languages is *not* countable

Undecidability of A_{TM}

Theorem: A_{TM} is undecidable

Proof: (By Contradiction) Assume A_{TM} is decidable and let H be a decider for A_{TM}

H(<M,w>) = { accept if M accepts w reject if M does not accept w

H is a decider for \mathbf{A}_{TM}

Undecidability of A_{TM} (continued)

Consider the TM D that submits the string <M> as input to the TM M

D = "On input <M>, where M is a TM: Run H on input <M,<M>> If H accepts <M,<M>>, reject If H rejects <M,<M>>, accept

- Since H is a decider, it must accept or reject
- > Therefore, D is a decider as well

H is a decider for A_{TM}

Undecidability of A_{TM} (continued) What happens if D's input is <D>?

D(<D>) = { reject if D accepts <D> accept if D does not accept <D>

D cannot exist!

Therefore, H cannot exist which is a contradiction Thus A_{тм} is undecidable Undecidability of A_{TM} (Review)

Assume H decides A_{TM}

- H(<M,w>) = accept if TM M accepts w, reject otherwise
- **Define D using H**
 - D(<M>) returns *opposite* of H(<M,<M>>)

Consider D(<D>)

• D accepts <D> if and only if D rejects <D>

Undecidability of A_{TM} (Review)

Assume H decides A_{TM}

- H(<M,w>) = accept if M accepts w
- H(<M,w>) = reject if M rejects w
- H(<M,<M>>) = reject if M rejects <M>

Define D using H

- D(<M>) = accept if H(<M,<M>>) = reject
- D(<M>) = accept if M rejects <M>
- D(<M>) = reject if M accepts <M>

Consider D(<D>)

- D(<D>) = accept if D rejects <D>
- D accepts <D> if and only if D rejects <D>

D accepts <D> if and only if D rejects <D>

What about ATM?

What can we know about the complement of ATM?

Can comp(A_{TM}) be decidable?

Can comp(A_{TM}**) be recognizable?**

We know that A_{TM} is Turing-recognizable.

What does it mean for both a language and its complement to both be Turing-recognizable?

Undecidable Languages

Coming Up

Proving a Language is Undecidable

- Use proof by contradiction
- Show that if a language L is decidable, it could be used to decide another language already known to be undecidable