
 
Introduction to the  

Theory of Computation

Set 8 — Turing Machines / Decidability

What Is an Algorithm?
Intuitively, an algorithm is anything that can

be simulated by a Turing machine  
(Church-Turing Thesis)

• Many algorithms can be simulated by Turing
machines

• Inputs can be represented as strings
• Graphs
• Polynomials
• Automata
• Etc.

Example Algorithm
Depth-first walk-through of binary tree

Which nodes do you visit, and in what
order, when doing a depth-first search?

• Visit each leaf node from left to right
• Recursive algorithm
• Stop after rightmost leaf node has been visited

Binary Tree Depth-First Walkthrough
Start at root
Process left subtree (if one exists)
Process right subtree (if one exists)
Process how?

• Print the node name
• If there is a left subtree then

• Process the left subtree
• Print the node name again

• If there is a right subtree then
• Process the right subtree
• Print the node name again

Example

A

B C

D FE G

IH J

A B D H D B E I E A C F J F C GB

Can a Turing Machine Do This?
Input must be a string (not a tree)

• Can we represent a tree with a string?
• Yes.

String representation of a binary tree

A

B C

D FE G

IH J

A B C D E F G H # # I J # # # ~

Can a Turing Machine Do This?

How do we know which node(s) are children
of the current node?

• The root node is at index 0.
• The children of node at index n are at indices

2n+1 and 2n+2

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
A B C D E F G H # # I J # # # ~

Input must be a string (not a tree)
• Can we represent a tree with a string?
• Yes

What About the Output?
Need to write out nodes in a particular order

• Can we do this with a TM?
• Yes. Add output tape
• A TM can move left and right on the input tape

writing to the output tape whenever
appropriate

A B C D E F G H # # I J # # # ~

A B D H D B E I E B A C F J F C G ~

Describing Turing Machines
From now on, we can describe Turing
machines algorithmically

M = “On input w
1. …
2. …

…”

Decidability
A language is decidable if some Turing
machine decides it
๏ Every string in Σ* is either accepted or rejected

Not all languages are decidable
• Not all languages can be decided by a Turing

machine
• We will see examples of both decidable and

undecidable languages

Showing a Language Is Decidable
Write a decider that decides it
Must show the decider

• Halts on all inputs
• Accepts w ⇔ w is in the language

Can use algorithmic description

DFA Acceptance Problem
Consider the language
ADFA = {<B,w> | B is a DFA that accepts the

string w}
Theorem: ADFA is a decidable language
Proof: Consider the following TM, M
M = “On input string <B,w>, where B is a

DFA and w is an input to B
1. Simulate B on input w
2. If simulation ends in accept state, accept.

Otherwise, reject.”

NFA Acceptance Problem
Consider the language
ANFA = {<B,w> | B is a NFA that accepts the

string w}
Theorem: ANFA is a decidable language
Proof: Consider the following TM, N
N = “On input string <B,w>
1. Convert B to a DFA C
2. Run TM M shown previously on <C,w>
3. If M accepts, accept. Otherwise, reject.”

RE Acceptance Problem
Consider the language
AREX = {<R,w> | R is an RE that generates the

string w}
Theorem: AREX is a decidable language
Proof: Consider the following TM, P
P = “On input string <R,w>
1. Convert R to a DFA C (using algorithms

discussed in class and in texts)
2. Run TM M shown previously on <C,w>
3. If M accepts, accept. Otherwise, reject.”

Some Decidable Languages
ADFA = {<B,w> | B is a DFA that accepts

input string w}
ANFA = {<B,w> | B is an NFA that accepts

input string w}
AREX = {<R,w> | R is a regular expression

that generates string w}

Emptiness Testing Problem
Consider the language
EDFA = {<A> | A is a DFA and L(A) = ∅}
Theorem: EDFA is a decidable language
Proof: Consider the following TM, T
T = “On input string <A>, where A is a DFA
1. Mark the start state
2. Repeat until no new states get marked

– Mark any state that has a transition coming into it
from any state already marked

3. If no accept states are marked, accept.
Otherwise, reject.”

DFA Equivalence Problem
EQDFA = {<A,B> | A and B are DFA’s

and L(A) = L(B)}
Theorem: EQDFA is a decidable language

Proof: Consider the following language
(L(A) ∩ L(B)) ∪ (L(A) ∩ L(B))

DFA Equivalence Problem

(L(A) ∩ L(B)) ∪ (L(A) ∩ L(B))

L(A) L(B)L(A)

DFA Equivalence Problem

(L(A) ∩ L(B)) ∪ (L(A) ∩ L(B))

L(A) L(B)L(B)

DFA Equivalence Problem

(L(A) ∩ L(B)) ∪ (L(A) ∩ L(B))

L(A) L(B)L(B)

DFA Equivalence Problem

(L(A) ∩ L(B)) ∪ (L(A) ∩ L(B))

L(A) L(B)L(A) L(B)

DFA Equivalence Problem

(L(A) ∩ L(B)) ∪ (L(A) ∩ L(B))

L(A) L(B)L(B)

DFA Equivalence Problem

(L(A) ∩ L(B)) ∪ (L(A) ∩ L(B))

L(A) L(B)L(A)

DFA Equivalence Problem

(L(A) ∩ L(B)) ∪ (L(A) ∩ L(B))

L(A) L(B)L(A) L(B)

DFA Equivalence Problem

(L(A) ∩ L(B)) ∪ (L(A) ∩ L(B))

L(A) L(B)L(A) L(B)

DFA Equivalence Problem
EQDFA = {<A,B> | A and B are DFA’s

and L(A) = L(B)}
Theorem: EQDFA is a decidable language

Proof: Consider DFA C that accepts  
L(C) = (L(A) ∩ L(B)) ∪ (L(A) ∩ L(B))

How do we know such a DFA exists?

If L(C) = ∅, then L(A) = L(B)

DFA Equivalence Problem

(L(A) ∩ L(B)) ∪ (L(A) ∩ L(B))

L(A) L(B)Җ

DFA Equivalence Problem

(L(A) ∩ L(B)) ∪ (L(A) ∩ L(B))

L(A) L(B)Җ

TM That Decides EQDFA

Q = “On input string <A,B>, where A and B
are DFAs

1. Create DFA C such that
L(C) = (L(A) ∩ L(B)) ∪ (L(A) ∩ L(B))

2. Submit C to Turing machine T that
decides EDFA

3. If T accepts C, accept.
Otherwise, reject.”

Some Decidable Languages
ADFA = {<B,w> | B is a DFA that accepts

input string w}
ANFA = {<B,w> | B is an NFA that accepts

input string w}
AREX = {<R,w> | R is a regular expression

that generates string w}
EDFA = {<A> | A is a DFA and L(A) = ∅}
EQDFA = {<A,B> | A and B are DFA’s and 

L(A) = L(B)}

Question
How would we show that the following
language is decidable?
ALLDFA = {<A> | A is a DFA that recognizes Σ* }

Another Question
Let L be any regular language
How would we show L is decidable?

• Assume L is described using a DFA

Deciders and CFG’s
Consider the following language

ACFG = {<G,w> | G is a CFG that generates
string w}

Is ACFG decidable?
Problem: 

How can we get a TM to simulate a CFG?
Must be certain CFG tries a finite number of steps!

Solution: Use Chomsky Normal Form

Chomsky Normal Form Review
All rules are of the form

A → BC
A →a
where A, B, and C are any variables;  
B and C cannot be the start variable

S → ε
 is the only ε rule; 
 S is the start variable

How Many Steps to Generate w?
If |w| = 0

1 step

If |w| = n > 0?
2n – 1 steps

TM Simulating ACFG

M = “On input <G>, where G is a CFG
1. Convert G into Chomsky Normal Form
2. If |w| = 0

Ø If there is an S → ε rule, accept
Ø Otherwise, reject

3. List all derivations with 2 |w| – 1 steps
Ø If any generate w, accept
Ø Otherwise, reject”

Empty CFG’s
Consider the following language

ECFG = {<G> | G is a CFG and L(G) = ∅}

Theorem: ECFG is decidable

Can we use the TM in ACFG to prove this?
No.  
There are infinitely many possible strings in Σ*

Instead, we need to check if there is any way
to get from the start variable to some string of
terminals

Work Backwards
B = “On input <G>, where G is a CFG
1. Mark all terminals
2. Repeat until no new variables are

marked
Mark any variable A if G has a rule A→U1U2…Uk
where U1, U2, …, Uk are all marked

✘ If S is marked, reject
✓ Otherwise, accept”

What About EQCFG?

Recall for EQDFA, we considered

(L(A) ∩ L(B)) ∪ (L(A) ∩ L(B))
Will this work for CFG’s?

No. CFG’s are not closed under
complementation or intersection

EQCFG is not a decidable language!
We will see this later

Decidability of CFL’s
Theorem:  

Every context-free language L is decidable
Proof: 

For each w, we need to decide whether or
not w is in L. Let G be a CFG for L. This
problem boils down to ACFG, which we
showed is decidable.

Relationship of Classes of Languages

Regular Context-
free

Decidable Turing-
recognizable

Language Input

ADFA <D,w>, D is a DFA, w is a string

ANFA <N,w>, N is an NFA, w is a string

AREX <R,w>, R is an RE, w is a string

EDFA <D>, D is a DFA and L(D) = ∅

EQDFA

L(R)

<C,D>, C and D are DFA’s and L(C) = L(D)

R is a regular language

ACFG <G,w>, G is a CFG, w is a string

ECFG <G>, G is a CFG and L(G) = ∅

L(C) C is a context free language

Languages We Know Are Decidable

Collaborative Exercise — 1
FDFA = {<A> | A is a DFA and L(A) is finite}

Collaborative Exercise — 2
PRIME = { n | n is a prime number}

Collaborative Exercise — 3
CONN = {<G> | G is a connected graph}

Collaborative Exercise — 4
L10DFA = {D | D is a DFA that accepts

every string w with |w| = 10}

Collaborative Exercise — 5
INTCFG = {<G1, G2, w> | G1 and G2 are CFGs

and w is accepted by both}

Collaborative Exercise — 6
INTLCFG = L(G1 ∩ G2), where G1 and G2 are CFGs

Decidable Languages
A language is decidable if some Turing
machine decides it

• Every string in Σ* is either accepted or rejected

Not all languages can be decided by a
Turing machine

Turing Machine Acceptance Problem
Consider the following language

ATM = {<M,w> | M is a TM that accepts w}

Theorem: ATM is Turing-recognizable

Theorem: ATM is undecidable

Proof: The Universal Turing Machine
recognizes, but does not decide, ATM

The Universal Turing Machine

U = “On input <M, w>, where M is a TM and
w is a string:

1. Simulate M on input w
2. If M ever enters its accept state, accept
3. If M ever enters its reject state, reject”

Why Can’t U Decide ATM?

Intuitively, if M never halts on w, 
 then U never halts on <M,w>

This is also known as the halting problem
 Given a TM M and a string w, 

does M halt on input w?
 Undecidable
 We may prove this more rigorously later

 Need some additional tools for proving properties
of languages

 Undecidable

Given two infinite sets A and B, is there any
way of determining if |A| = |B| or if |A| > |B|?

Yes!
Functional correspondence can show two
infinite sets have the same number of
elements
Diagonalization can show one infinite set
has more elements than another

Comparing the Size of Infinite Sets

Functional Correspondence
Let f be a function from A to B
f is called one-to-one if …

f(a1) ≠ f(a2) whenever a1 ≠ a2

f is called onto if …
For every b ∈ B, there is some a ∈ A such that
f(a) = b

f is called a correspondence if it is both
one‑to‑one and onto

A correspondence is a way to pair elements of
the two sets

Example — Correspondence
Consider f: ℤ≥0 → P, where 
 ℤ≥0 = {0,1,2,…} and P = {positive squares}

P = {1, 4, 9, 16, 25, …}
f(x) = (x+1)2

Is f one-to-one?
Yes

Is f onto?
Yes

Therefore |ℤ≥0| = |P|

Given two infinite sets A and B, is there any
way of determining if |A| = |B| or if |A| > |B|?

Yes!
Functional correspondence can show two
infinite sets have the same number of
elements
Diagonalization can show one infinite set
has more elements than another

Comparing the Size of Infinite Sets

Countable Sets
Let ℕ = {1, 2, 3, …} the set of natural numbers
The set A is countable if …

• A is finite, or
• |A| = |ℕ|

Some example of countable sets
• Integers
• {x | x ∈ ℕ and (x mod 3) = 1}
• All positive primes

{0,-1, 1,-2, 2,-3, 3, …}
{1,4,7,10,…}

{2,3,5,7,11,…}

The Positive Rational Numbers

Is Q = {m / n | m,n ∈ ℕ} countable?
Yes

1/1 1/2 1/3 1/4 1/5
2/1 2/2 2/3 2/4 2/5
3/1 3/2 3/3 3/4 3/5
4/1 4/2 4/3 4/4 4/5
5/1 5/2 5/3 5/4 5/5

Etc…

m/n

Is ℝ+ (the set of positive real numbers) countable?
No!

n f(n)

1 1.56439…

2 3.23891…

3 7.42210…

4 2.22266…

5 0.16982…

1.56439…

3.23891…

7.42210…

2.22266…

0.16982…

The Real Numbers

X = 4.1337…

Diagonalization

The Real Numbers
The set of real numbers ℝ is uncountable.

Proof by contradiction using diagonalization.
Assume that a correspondence ƒ exists between
ℕ and ℝ.
Find an x in ℝ that is not paired with anything in ℕ.
Construct such an x by choosing each digit of x to
make x different from one of the real numbers that is
paired with an element of ℕ, to ensure that x≠ƒ(n) ∀n.
We will construct x to be between 0 and 1, so all
significant digits are part of the fractional part
following the decimal point.

The Real Numbers
The set of real numbers ℝ is uncountable.

To ensure that x≠ƒ(1) we choose the first digit of x to
be anything other than the first fractional digit of ƒ(1).
Note that we have a choice of 9 other digits.
To ensure that x≠ƒ(k) we choose the kth digit of x to
be anything other than the kth digit of ƒ(k).
We continue down the diagonal of a table of ƒ(n)
values.
We have constructed x so that if is not ƒ(n) for any n,
because it differs from ƒ(n) in the nth fractional digit.
Thus we have a contradiction, since x is not paired
with a number in ℕ.

The set of real numbers ℝ is uncountable.

The Real Numbers
Is ℝ+ (the set of positive real numbers) countable?

No!

n f(n)

1 0.156439…

2 0.323891…

3 0.742210…

4 0.222266…

5 0.016982…

X = 0.41337…

Diagonalization

The Set of All Infinite Binary Strings
Is the set of all (infinite) binary strings
countable?

• No
• Diagonalization also works to prove this is not

countable
n f(n)
1 1 0 0 1 0 …

2 0 1 1 0 1 …

3 1 1 0 1 1 …

4 1 0 0 1 1 …

5 0 1 1 1 0 …

X ＝ 0 0 1 0 1 …

The Set of All Infinite Binary Strings
Is the set of all (infinite) binary strings
countable?

• No
• Diagonalization also works to prove this is not

countable

On the other hand, the set of finite length
binary strings is countable!

• Let xb be the binary representation of x

• f(x) = xb is a 1-to-1 and onto function from ℕ to
the set of finite binary strings

9b = 1001

The Set of All Binary Strings
Is the set of all binary strings countable?

• No
• Diagonalization works to prove this is not

countable

The set of finite length binary strings is
countable!

• Let xb be the binary representation of x

• f(x) = xb is a 1-to-1 and onto function from ℕ to
the set of finite binary strings

Is the Set of All Languages in Σ* Countable?

No
This set has the same cardinality as the set of all
infinite binary strings

Σ* = { ε, a, b, aa, ab, ba, bb, aaa, aab, …}

A = { a, ab, aaa, … }
χA = 0 1 0 0 1 0 0 1 0 …

The set of all languages in Σ* is not countable

Σ* vs. Languages in Σ*
The set Σ* is countable

• Let |Σ| = n
• Every string in Σ* can be associated with a

unique number, y, in base‑(n+1)
• E.g., if Σ = {a, b, c}, we can associate the string

acba with the value 1×43+3×42+2×41+1×40 = 121
• Let f(x) be the string associated with x

The set of all languages in Σ* is not countable
• It is the power set of Σ*

Is the Set of All TM’s Countable?
Yes
Every Turing machine can be represented
by a finite length string, so the set of all
Turing machines is countable

Theorem: Some languages are not
Turing‑recognizable

Proof: There are more languages than
there are Turing machines

Some Languages Not Turing-recognizable

Theorem: Some languages are not
Turing‑recognizable

Proof: There are more languages than
there are Turing machines

The set of all Turing machines is countable
The set of all languages is not countable

Undecidability of ATM

Theorem: ATM is undecidable

Proof: (By Contradiction)  
Assume ATM is decidable and let H be a
decider for ATM

H(<M,w>) = { accept if M accepts w
reject if M does not accept w

H is a decider for ATM

Undecidability of ATM (continued)

Consider the TM D that submits the string
<M> as input to the TM M

D = “On input <M>, where M is a TM:
 Run H on input <M,<M>>
 If H accepts <M,<M>>, reject
 If H rejects <M,<M>>, accept

Ø Since H is a decider, 
it must accept or reject

Ø Therefore, D is a decider as well

H is a decider for ATM

Undecidability of ATM (continued)

What happens if D’s input is <D>?

D(<D>) = {
D cannot exist!
Therefore, H cannot exist

which is a contradiction
Thus ATM is undecidable

reject if D accepts <D>
accept if D does not accept <D>

Undecidability of ATM (Review)

Assume H decides ATM

• H(<M,w>) = accept if TM M accepts w,
reject otherwise

Define D using H
• D(<M>) returns opposite of H(<M,<M>>)

Consider D(<D>)
• D accepts <D> if and only if D rejects <D>

!

Undecidability of ATM (Review)

Assume H decides ATM

• H(<M,w>) = accept if M accepts w
• H(<M,w>) = reject if M rejects w
• H(<M,<M>>) = reject if M rejects <M>

Define D using H
• D(<M>) = accept if H(<M,<M>>) = reject
• D(<M>) = accept if M rejects <M>
• D(<M>) = reject if M accepts <M>

Consider D(<D>)
• D(<D>) = accept if D rejects <D>
• D accepts <D> if and only if D rejects <D>

Undecidability of ATM (Review)

Assume H decides ATM

• H(<M,w>) = accept if M accepts w
• H(<M,w>) = reject if M rejects w
• H(<M,<M>>) = reject if M rejects <M>

Define D using H
• D(<M>) = accept if H(<M,<M>>) = reject
• D(<M>) = accept if M rejects <M>
• D(<M>) = reject if M accepts <M>

Consider D(<D>)
• D(<D>) = accept if D rejects <D>
• D accepts <D> if and only if D rejects <D>

CONTRADICTIONATM is not decidable

What about ATM?
What can we know about the complement of ATM?

Can comp(ATM) be decidable?

Can comp(ATM) be recognizable?

We know that ATM is Turing-recognizable.

What does it mean for both a language and its
complement to both be Turing-recognizable?

Undecidable Languages

Turing
recognizable

Co-Turing
recognizableDecidable

Coming Up
Proving a Language is Undecidable

• Use proof by contradiction
• Show that if a language L is decidable, 

it could be used to decide another language
already known to be undecidable

