Introduction to the Theory of Computation

Set 8 - Turing Machines / Decidability

What Is an Algorithm?

Intuitively, an algorithm is anything that can be simulated by a Turing machine (Church-Turing Thesis)

- Many algorithms can be simulated by Turing machines
- Inputs can be represented as strings
- Graphs
- Polynomials
- Automata
- Etc.

Example Algorithm

Depth-first walk-through of binary tree

Which nodes do you visit, and in what order, when doing a depth-first search?

- Visit each leaf node from left to right
- Recursive algorithm
- Stop after rightmost leaf node has been visited

Binary Tree Depth-First Walkthrough

Start at root

Process left subtree (if one exists)
Process right subtree (if one exists)
Process how?

- Print the node name
- If there is a left subtree then
- Process the left subtree
- Print the node name again
- If there is a right subtree then
- Process the right subtree
- Print the node name again

Example

ABDHDBEIEBACFJFCG

Can a Turing Machine Do This?

Input must be a string (not a tree)

- Can we represent a tree with a string?
- Yes.

String representation of a binary tree

Can a Turing Machine Do This?

Input must be a string (not a tree)

- Can we represent a tree with a string?
- Yes

How do we know which node(s) are children of the current node?

- The root node is at index 0 .
- The children of node at index n are at indices $2 \mathrm{n}+1$ and $\mathbf{2 n + 2}$

What About the Output?

Need to write out nodes in a particular order

- Can we do this with a TM?
- Yes. Add output tape
- A TM can move left and right on the input tape writing to the output tape whenever appropriate

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l}
\hline A & C & D & F & G & H & \# & \text { I } & \text { J }
\end{array}
$$

$$
A B D H D B E I E B A C F J F C G \sim
$$

Describing Turing Machines

From now on, we can describe Turing machines algorithmically

M = "On input w

$$
\begin{aligned}
& \text { 1. ... } \\
& \text { 2. ... }
\end{aligned}
$$

Decidability

A language is decidable if some Turing machine decides it

- Every string in Σ^{\star} is either accepted or rejected

Not all languages are decidable

- Not all languages can be decided by a Turing machine
- We will see examples of both decidable and undecidable languages

Showing a Language Is Decidable

 Write a decider that decides itMust show the decider

- Halts on all inputs
- Accepts $\mathbf{w} \Leftrightarrow \mathbf{w}$ is in the language

Can use algorithmic description

DFA Acceptance Problem

Consider the language

$A_{D F A}=\{<B, w>\mid B$ is a DFA that accepts the string w\}
Theorem: $A_{\text {DFA }}$ is a decidable language
Proof: Consider the following TM, M
$M=$ "On input string <B,w>, where B is a DFA and w is an input to B

1. Simulate B on input w
2. If simulation ends in accept state, accept. Otherwise, reject."

NFA Acceptance Problem

Consider the language

$A_{\text {NFA }}=\{<B, w>\mid B$ is a NFA that accepts the string w\}
Theorem: $\mathbf{A}_{\text {NFA }}$ is a decidable language
Proof: Consider the following TM, N N = "On input string <B,w> 1. Convert B to a DFA C
2. Run TM M shown previously on $<C, w\rangle$
3. If M accepts, accept. Otherwise, reject."

RE Acceptance Problem

Consider the language
$A_{\text {REX }}=\{<R, w\rangle \mid R$ is an RE that generates the string w\}
Theorem: $\mathbf{A}_{\text {REX }}$ is a decidable language Proof: Consider the following TM, P P = "On input string <R,w> 1. Convert R to a DFA C (using algorithms discussed in class and in texts)
2. Run TM M shown previously on $<\mathrm{C}, \mathrm{w}>$
3. If M accepts, accept. Otherwise, reject."

Some Decidable Languages

$$
\begin{gathered}
A_{D F A}=\{<B, w>\mid B \text { is a DFA that accepts } \\
\text { input string } w\}
\end{gathered}
$$

$A_{\text {NFA }}=\{<B, w\rangle \mid B$ is an NFA that accepts input string w\}
$A_{R E X}=\{<R, w>\mid R$ is a regular expression that generates string w\}

Emptiness Testing Problem

Consider the language
$E_{D F A}=\{\langle A>| A$ is a DFA and $L(A)=\varnothing\}$
Theorem: $\mathrm{E}_{\mathrm{DFA}}$ is a decidable language
Proof: Consider the following TM, T
$\mathrm{T}=$ "On input string $\langle\mathrm{A}\rangle$, where A is a DFA

1. Mark the start state
2. Repeat until no new states get marked

- Mark any state that has a transition coming into it from any state already marked

3. If no accept states are marked, accept. Otherwise, reject."

DFA Equivalence Problem

$E Q_{D F A}=\{<A, B>\mid A$ and B are DFA's and $L(A)=L(B)\}$

Theorem: $E Q_{\text {DFA }}$ is a decidable language
Proof: Consider the following language
$(L(A) \cap \overline{L(B)}) \cup(\overline{L(A)} \cap L(B))$

DFA Equivalence Problem

$$
(\underline{L(A)} \cap \overline{L(B)}) \cup(\overline{L(A)} \cap L(B))
$$

DFA Equivalence Problem

$$
(L(A) \cap \overline{L(B)}) \cup(\overline{L(A)} \cap \underline{L B})
$$

DFA Equivalence Problem

$$
(L(A) \cap \overline{L(B)}) \cup(\overline{L(A)} \cap L(B))
$$

DFA Equivalence Problem

$$
(L(A) \cap \overline{L(B)}) \cup(\overline{L(A)} \cap L(B))
$$

DFA Equivalence Problem

$$
(L(A) \cap \overline{L(B)}) \cup(\overline{L(A)} \cap \underline{L B})
$$

DFA Equivalence Problem

$$
(\mathrm{L}(\mathbf{A}) \cap \overline{\mathrm{LB}})) \cup(\overline{\mathrm{L}(\mathrm{~A})} \cap \mathrm{L}(\mathrm{~B}))
$$

DFA Equivalence Problem

$$
(L(A) \cap \overline{(B)}) \cup(\overline{L(A)} \cap L(B))
$$

DFA Equivalence Problem

$(\bar{L}(A) \cap \overline{L(B)}) \cup(\overline{L(A)} \cap L(B))$

DFA Equivalence Problem

$E Q_{D F A}=\{\langle A, B>| A$ and B are DFA's and $L(A)=L(B)\}$

Theorem: $E Q_{D F A}$ is a decidable language
Proof: Consider DFA C that accepts

$$
L(C)=(L(A) \cap \overline{L(B)}) \cup(\overline{L(A)} \cap L(B))
$$

How do we know such a DFA exists?

$$
\text { If } L(C)=\varnothing \text {, then } L(A)=L(B)
$$

DFA Equivalence Problem

$(\bar{L}(A) \cap \overline{L(B)}) \cup(\overline{L(A)} \cap L(B))$

DFA Equivalence Problem

$(\mathbf{L}(A) \cap \overline{L(B)}) \cup(\overline{L(A)} \cap L(B))$

TM That Decides $E Q_{\text {DFA }}$

$Q=$ "On input string $\langle A, B\rangle$, where A and B are DFAs

1. Create DFA C such that

$$
\mathrm{L}(\mathrm{C})=(\mathrm{L}(\mathrm{~A}) \cap \overline{\mathrm{L}(\mathrm{~B})}) \cup(\overline{\mathrm{L}(\mathrm{~A})} \cap \mathrm{L}(\mathrm{~B}))
$$

2. Submit C to Turing machine T that decides $\mathrm{E}_{\mathrm{DFA}}$
3. If T accepts C, accept. Otherwise, reject."

Some Decidable Languages

$A_{D F A}=\{<B, w>\mid B$ is a DFA that accepts

input string w $\}$
$A_{\text {NFA }}=\{<B, w>\mid B$ is an NFA that accepts input string w\}
$A_{R E X}=\{<R, w>\mid R$ is a regular expression that generates string w\}
$E_{D F A}=\{<A>I A$ is a DFA and $L(A)=\varnothing\}$
$E Q_{D F A}=\{<A, B>\mid A$ and B are DFA's and

$$
L(A)=L(B)\}
$$

Question

How would we show that the following language is decidable?
$A L L_{D F A}=\left\{\langle A>| A\right.$ is a DFA that recognizes $\left.\Sigma^{*}\right\}$

Another Question

Let L be any regular language

How would we show L is decidable?

- Assume L is described using a DFA

Deciders and CFG's

Consider the following language
$A_{C F G}=\{<G, w>\mid G$ is a CFG that generates string w\}
Is $\boldsymbol{A}_{\mathrm{CFG}}$ decidable?
Problem:
How can we get a TM to simulate a CFG?
Must be certain CFG tries a finite number of steps!
Solution: Use Chomsky Normal Form

Chomsky Normal Form Review

All rules are of the form
$A \rightarrow B C$
$\mathrm{A} \rightarrow \mathbf{a}$
where A, B, and C are any variables;
B and C cannot be the start variable
$S \rightarrow \varepsilon$
is the only ε rule;
S is the start variable

How Many Steps to Generate w?

If $\mathrm{lwl}=0$

1 step
If lwl $=\mathbf{n}>\mathbf{0}$?
$2 n-1$ steps

TM Simulating $\mathbf{A}_{\text {CFG }}$

$M=$ "On input <G>, where G is a CFG

1. Convert G into Chomsky Normal Form
2. If $|w|=0$
$>$ If there is an $S \rightarrow \varepsilon$ rule, accept
$>$ Otherwise, reject
3. List all derivations with $2|w|-1$ steps
$>$ If any generate w, accept
> Otherwise, reject"

Empty CFG's

Consider the following language

$$
E_{C F G}=\{<G>I G \text { is a CFG and } L(G)=\varnothing\}
$$

Theorem: $\mathrm{E}_{\mathrm{CFG}}$ is decidable

Can we use the TM in $A_{C F G}$ to prove this?

No.
There are infinitely many possible strings in Σ^{\star} Instead, we need to check if there is any way to get from the start variable to some string of terminals

Work Backwards

$\mathrm{B}=$ "On input <G>, where G is a CFG

1. Mark all terminals
2. Repeat until no new variables are marked
Mark any variable A if G has a rule $A \rightarrow U_{1} U_{2} \ldots U_{k}$ where $\mathrm{U}_{1}, \mathrm{U}_{2}, \ldots, \mathrm{U}_{\mathrm{k}}$ are all marked
X If S is marked, reject
\checkmark Otherwise, accept"

What About $E_{\text {CFG? }}$

Recall for $E_{D_{\text {DFA }}}$, we considered

$$
(\mathrm{L}(\mathrm{~A}) \cap \overline{\mathrm{L}(\mathrm{~B})}) \cup(\overline{\mathrm{L}(\mathrm{~A})} \cap \mathrm{L}(\mathrm{~B}))
$$

Will this work for CFG's?
No. CFG's are not closed under complementation or intersection
$E Q_{\mathrm{CFG}}$ is not a decidable language! We will see this later

Decidability of CFL's

Theorem:
Every context-free language L is decidable
Proof:
For each w, we need to decide whether or not w is in L. Let G be a CFG for L. This problem boils down to $A_{\text {CFG }}$, which we showed is decidable.

Relationship of Classes of Languages

Languages We Know Are Decidable

 Language Input$A_{D F A}\langle D, w\rangle, D$ is a DFA, w is a string
$A_{\text {MFA }}\langle N, w\rangle, N$ is an NFA, w is a string
$A_{\text {REX }} \quad\langle R, w\rangle, R$ is an RE, w is a string
$E_{D F A}\langle D\rangle, D$ is a DFA and $L(D)=\varnothing$

$E Q_{D F A}$	$\langle C, D\rangle, C$ and D are $D F A$
$L(R)$	R is a regular language

$A_{\text {CF }} \quad\langle G, w\rangle, G$ is a CF G, w is a string
$E_{\text {CF }} \quad\langle G\rangle, \quad G$ is a $C F G$ and $L(G)=\varnothing$
$L(C) \quad C$ is a context free language

Collaborative Exercise - 1

$F_{D F A}=\{\langle A>I A$ is a DFA and $L(A)$ is finite $\}$

Collaborative Exercise - 2

PRIME = $\{\mathrm{n} \mid \mathrm{n}$ is a prime number $\}$

Collaborative Exercise - 3

CONN $=\{\langle G>| G$ is a connected graph $\}$

Collaborative Exercise - 4

$\mathrm{L} 10_{\mathrm{DFA}}=\{\mathrm{D}$ I D is a DFA that accepts every string w with $\mathrm{IwI}=10\}$

Collaborative Exercise - 5

$\operatorname{INT}_{\mathrm{CFG}}=\left\{<\mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{w}>\mid \mathrm{G}_{1}\right.$ and G_{2} are CFGs and w is accepted by both\}

Collaborative Exercise - 6

$\mathrm{INTL}_{\mathrm{CFG}}=\mathrm{L}\left(\mathrm{G}_{1} \cap \mathrm{G}_{2}\right)$, where G_{1} and G_{2} are CFGs

Decidable Languages

A language is decidable if some Turing machine decides it

- Every string in Σ^{\star} is either accepted or rejected

Not all languages can be decided by a Turing machine

Turing Machine Acceptance Problem

Consider the following language
$A_{T M}=\{\langle M, w>| M$ is a TM that accepts $w\}$
Theorem: $\mathbf{A}_{\text {TM }}$ is Turing-recognizable
Theorem: $\mathbf{A}_{T M}$ is undecidable
Proof: The Universal Turing Machine recognizes, but does not decide, $\mathrm{A}_{\text {TM }}$

The Universal Turing Machine

$\mathrm{U}=$ " On input <M, w>, where M is a TM and w is a string:

1. Simulate M on input w
2. If M ever enters its accept state, accept 3. If M ever enters its reject state, reject"

Why Can't U Decide $\mathrm{A}_{\text {тм }}$?

Intuitively, if M never halts on w, then U never halts on <M,w>

This is also known as the halting problem
Given a TM M and a string w, does M halt on input w?

Undecidable
We may prove this more rigorously later
Need some additional tools for proving properties of languages

Comparing the Size of Infinite Sets

Given two infinite sets A and B, is there any way of determining if $|A|=|B|$ or if $|A|>|B|$?

Yes!

Functional correspondence can show two infinite sets have the same number of elements

Diagonalization can show one infinite set has more elements than another

Functional Correspondence

Let f be a function from A to B

f is called one-to-one if ...
$f\left(a_{1}\right) \neq f\left(a_{2}\right)$ whenever $a_{1} \neq a_{2}$
f is called onto if ...
For every $\mathbf{b} \in B$, there is some $\mathbf{a} \in A$ such that $f(a)=b$
f is called a correspondence if it is both one-to-one and onto

A correspondence is a way to pair elements of the two sets

Example - Correspondence

Consider $\mathrm{f}: \mathbb{Z} \geq 0 \rightarrow \mathbf{P}$, where
$\mathbb{Z} \geq 0=\{0,1,2, \ldots\}$ and $P=\{$ positive squares $\}$

$$
\begin{aligned}
& P=\{1,4,9,16,25, \ldots\} \\
& f(x)=(x+1)^{2}
\end{aligned}
$$

Is f one-to-one?
Yes
Is fonto?
Yes
Therefore $\mathbb{I} \geq \geq 0|=|P|$

Comparing the Size of Infinite Sets

Given two infinite sets A and B, is there any way of determining if $|A|=|B|$ or if $|A|>|B|$?

Yes!

Functional correspondence can show two infinite sets have the same number of elements

Diagonalization can show one infinite set has more elements than another

Countable Sets

Let $\mathbb{N}=\{1,2,3, \ldots\}$ the set of natural numbers
The set \mathbf{A} is countable if ...

- A is finite, or
- $|\mathbf{A}|=|\mathbb{N}|$

Some example of countable sets

- Integers $\{0,-1,1,-2,2,-3,3, \ldots\}$
$\cdot\{x \mid x \in \mathbb{N}$ and $(x \bmod 3)=1\} \quad\{1,4,7,10, \ldots\}$
- All positive primes $\{2,3,5,7,11, \ldots\}$

The Positive Rational Numbers

Is $\mathbf{Q}=\{\mathrm{m} / \mathrm{n}$ I $\mathrm{m}, \mathrm{n} \in \mathbb{N}\}$ countable?

Yes

m / n

The Real Numbers

Is \mathbb{R}^{+}(the set of positive real numbers) countable? No!

n	$f(n)$	
1	$\underline{1.56439 \ldots}$	
2	$3.23891 \ldots$	
3	$7.4 \underline{2} 210 \ldots$	
4	$2.22 \underline{2} 66 \ldots$	
5	$0.16982 \ldots$	

The Real Numbers

The set of real numbers \mathbb{R} is uncountable.
Proof by contradiction using diagonalization.
Assume that a correspondence f exists between \mathbb{N} and \mathbb{R}.

Find an x in \mathbb{R} that is not paired with anything in \mathbb{N}.
Construct such an x by choosing each digit of x to make x different from one of the real numbers that is paired with an element of \mathbb{N}, to ensure that $x \neq f(n) \forall n$.

We will construct x to be between 0 and 1 , so all significant digits are part of the fractional part following the decimal point.

The Real Numbers

The set of real numbers \mathbb{R} is uncountable.

To ensure that $x \neq f(1)$ we choose the first digit of x to be anything other than the first fractional digit of $f(1)$. Note that we have a choice of 9 other digits.
To ensure that $x \neq f(k)$ we choose the kth digit of x to be anything other than the kth digit of $f(k)$.

We continue down the diagonal of a table of $f(n)$ values.

We have constructed x so that if is not $f(n)$ for any n, because it differs from $f(n)$ in the nth fractional digit.
Thus we have a contradiction, since x is not paired with a number in \mathbb{N}.

The Real Numbers

Is \mathbb{R}^{+}(the set of positive real numbers) countable? No!

n	$f(n)$
1	$0.156439 \ldots$
2	$0.3 \underline{2} 3891 \ldots$
3	$0.74 \underline{2} 210 \ldots$
4	$0.222 \underline{2} 66 \ldots$
5	$0.016982 \ldots$

$$
X=0.41337 \ldots
$$

Diagonalization

The Set of All Infinite Binary Strings

Is the set of all (infinite) binary strings

 countable?- No
- Diagonalization also works to prove this is not countable

n	$f(n)$					
1	1	0	0	1	0	\ldots
2	0	1	1	0	1	\ldots
3	1	1	0	1	1	\ldots
4	1	0	0	1	1	\ldots
5	0	1	1	1	0	\ldots

The Set of All Infinite Binary Strings

Is the set of all (infinite) binary strings

 countable?- No
- Diagonalization also works to prove this is not countable

On the other hand, the set of finite length binary strings is countable!

- Let x_{b} be the binary representation of x
- $f(x)=x_{b}$ is a 1-to-1 and onto funetion 1eentin to the set of finite binary strings

The Set of All Binary Strings

Is the set of all binary strings countable?

- No
- Diagonalization works to prove this is not countable

The set of finite length binary strings is countable!

- Let x_{b} be the binary representation of x
- $f(x)=x_{b}$ is a 1-to-1 and onto function from \mathbb{N} to the set of finite binary strings

Is the Set of All Languages in Σ^{*} Countable?

No

This set has the same cardinality as the set of all infinite binary strings
$\Sigma^{*}=\{\varepsilon, \mathbf{a}, \mathbf{b}, \mathbf{a a}, \mathbf{a b}, \mathbf{b a}, \mathbf{b b}, \mathbf{a a a}, \mathbf{a a b}, \ldots\}$

The set of all languages in Σ^{*} is not countable

Σ^{*} vs. Languages in Σ^{*}

The set Σ^{*} is countable

- Let $|\Sigma|=n$
- Every string in Σ^{*} can be associated with a unique number, y , in base- $(\mathrm{n}+1)$
- E.g., if $\Sigma=\{a, b, c\}$, we can associate the string acba with the value $1 \times 4^{3}+3 \times 4^{2}+2 \times 4^{1}+1 \times 4^{0}=121$
- Let $\mathrm{f}(\mathrm{x})$ be the string associated with x

The set of all languages in Σ^{*} is not countable

- It is the power set of Σ^{*}

Is the Set of All TM's Countable?

Yes
Every Turing machine can be represented by a finite length string, so the set of all Turing machines is countable

Theorem: Some languages are not Turing-recognizable

Proof: There are more languages than there are Turing machines

Some Languages Not Turing-recognizable

Theorem: Some languages are not Turing-recognizable

Proof: There are more languages than there are Turing machines

The set of all Turing machines is countable
The set of all languages is not countable

Undecidability of A_{TM}

Theorem: $\mathbf{A}_{\text {TM }}$ is undecidable

Proof: (By Contradiction)
Assume $\mathrm{A}_{\text {TM }}$ is decidable and let H be a decider for $\mathbf{A}_{\text {TM }}$
$H(<M, w\rangle)=\left\{\begin{array}{l}\text { accept if } M \text { accepts } w \\ \text { reject if } M \text { does not accept } w\end{array}\right.$
H is a decider for $A_{\text {тм }}$

Undecidability of $\mathrm{A}_{\text {TM }}$ (continued)

Consider the TM D that submits the string <M> as input to the TM M
$\mathrm{D}=$ "On input $\langle\mathrm{M}\rangle$, where M is a TM: Run H on input <M,<M>> If H accepts $\langle M,<M \gg$, reject If H rejects $<\mathrm{M},<\mathrm{M} \gg$, accept
> Since H is a decider, it must accept or reject
> Therefore, D is a decider as well
H is a decider for $A_{\text {TM }}$

Undecidability of $\mathrm{A}_{\text {TM }}$ (continued)

What happens if D 's input is < $D>$?
$D(<D>)=\left\{\begin{array}{l}\text { reject if } D \text { accepts }<D>\end{array}\right.$ accept if D does not accept <D>

D cannot exist!
Therefore, H cannot exist
which is a contradiction
Thus $\mathrm{A}_{\text {TM }}$ is undecidable

Undecidability of $\mathrm{A}_{\text {TM }}$ (Review)

Assume H decides $\mathrm{A}_{\text {TM }}$
$\cdot \mathrm{H}(<M, w>)=$ accept if TM M accepts w, reject otherwise

Define D using H

- $\mathrm{D}(<\mathrm{M}>)$ returns opposite of $\mathrm{H}(<\mathrm{M},<\mathrm{M} \gg)$

Consider D(<D>)

- D accepts $<\mathrm{D}>$ if and only if D rejects < $\mathrm{D}>$

Undecidability of $\mathbf{A}_{\text {TM }}$ (Review)

Assume H decides $\mathrm{A}_{\text {TM }}$

- $\mathrm{H}(<\mathrm{M}, \mathrm{w}>)=$ accept if M accepts \mathbf{w}
- $\mathrm{H}(<\mathrm{M}, \mathrm{w}>)=$ reject if M rejects \mathbf{w}
- $\mathrm{H}(<\mathrm{M},<\mathrm{M} \gg$) $=$ reject if M rejects <M>

Define D using H

- $\mathrm{D}(<\mathrm{M}>)=$ accept if $\mathrm{H}(<\mathrm{M},<\mathrm{M} \gg)=$ reject
- $D(<M>)=$ accept if M rejects <M>
- $D(<M>)=$ reject if M accepts $<M>$

Consider D(<D>)

- $D(<D>)=$ accept if D rejects <D>
- D accepts <D> if and only if D rejects <D>

Undecidability of $\mathrm{A}_{\text {TM }}$ (Review)

Ass an H decides $A_{\text {TM }}$

- $H(\langle M, w>)=$ accept if M accepts w
- $H(<M, w>)=$ reject if M rejects w
- H(<M <M>>) =reient if M reients <M> 4
of $A_{\text {TM }}$ is not decidable
- $D(<M>)$ नa be if puejects <M>
- $D^{\prime} \leqslant^{-1}>$, re scrif M accepts <M>
nsicier D(<D>)
- $D(<D>)=$ accept if D rejects <D>
- D accepts < $\mathrm{D}>$ if and only if D rejects < $\mathrm{D}>$

What about $\overline{\text { Атм }^{\prime}}$?

What can we know about the complement of Атм ?

Can comp(Атм) be decidable?

Can comp(Атм) be recognizable?

We know that $\mathrm{A}_{\text {тм }}$ is Turing-recognizable.

What does it mean for both a language and its complement to both be Turing-recognizable?

Undecidable Languages

Coming Up

Proving a Language is Undecidable

- Use proof by contradiction
- Show that if a language L is decidable, it could be used to decide another language already known to be undecidable

