
 
Introduction to the  

Theory of Computation

Set 7 — Turing Machines



Recap To Date
Finite automata (both deterministic and 

nondeterministic) machines accept 
regular languages

Weakness: no memory

Pushdown automata accept 
context-free languages

Add memory in the form of a stack
Weakness: stack is restrictive



Turing Machines

Similar to a finite automata
+Unrestricted memory in the form of a tape

Can do anything a real computer can do! 
• Still cannot solve some problems

Church-Turing thesis:
Any effective computation can be carried 
out by some Turing machine



Control

a   b   a  ~ 

Initially tape contains the input string
Blanks everywhere else on the tape, 
denoted by some special symbol in the tape 
alphabet:  ~, ☐, ¬, _, !, …

Machine may also write information on 
the tape

Turing Machine Schematic



Control

a   b   a  ~ 

Can move tape head to read 
information written to tape

Continues computing until output 
produced

– Output values are accept or reject

Turing Machine Schematic



Control

a   b   a  ~ 

• Turing machine results
– Accept
– Reject
– Never halts

• We may not be able to tell result by 
observation

Turing Machine Schematic



Differences Between TM and FA
TM has tape you can read from and write to
Read-write head can be moved in either 

direction
Tape is infinite
Accept and reject states  

take effect immediately



Example
How can we design a Turing machine to 
find the middle of a string?

• If string length is odd, accept and indicate 
middle symbol

• If string length is even, reject string

Make multiple passes over string ✗-ing out 
symbols at ends until only middle remains



Processing Input
1. Check if string is empty or length 1

Ø If empty, return reject; If length 1, return accept

2. Write X over first and last non-X symbols
Ø After this, the head will be at the second X

3. Move left one symbol
Ø If symbol is an X, return reject 

(string is even in length)

4. Move left one symbol
Ø If symbol is an X, return accept (string is not 

even in length; middle symbol is only non-X)

5. Go to step 2



Example
00110~

• First check length of string
• X first and last non-X symbols

X011X~
• Move left one symbol

X011X~
• Is symbol an X? No
• Move left one symbol

X011X~
• Is symbol an X? No
• Write X over first and last non-X symbols

1. Check if string is empty or length 1
Ø If empty, return reject; If length 1, return accept

2. Write X over first and last non-X symbols
Ø After this, the head will be at the second X

3. Move left one symbol
Ø If symbol is an X, return reject 

(string is even in length)

4. Move left one symbol
Ø If symbol is an X, return accept (string is not  

even in length; middle symbol is only non-X)

5. Go to step 2



Example
00110~

• First check if string is empty
• X first and last non-X symbols

X011X~
• Move left one symbol

X011X~
• Is symbol an X? No
• Move left one symbol

X011X~
• Is symbol an X? No
• Write X over first and last non-X symbols

1. Check if string is empty or length 1
Ø If empty, return reject; If length 1, return accept

2. Write X over first and last non-X symbols
Ø After this, the head will be at the second X

3. Move left one symbol
Ø If symbol is an X, return reject 

(string is even in length)

4. Move left one symbol
Ø If symbol is an X, return accept (string is not  

even in length; middle symbol is only non-X)

5. Go to step 2



Example
XX1XX~

• Move left one symbol

XX1XX~
• Is symbol an X? No
• Move left one symbol

XX1XX~
• Is symbol an X? Yes
• Return accept

1. Check if string is empty or length 1
Ø If empty, return reject; If length 1, return accept

2. Write X over first and last non-X symbols
Ø After this, the head will be at the second X

3. Move left one symbol
Ø If symbol is an X, return reject 

(string is even in length)

4. Move left one symbol
Ø If symbol is an X, return accept (string is not  

even in length; middle symbol is only non-X)

5. Go to step 2



Formal Definition of a TM
Definition: A Turing Machine is a 7-tuple 

(Q,Σ,Γ,δ,q0,qaccept,qreject) 
where Q, Σ, and Γ are finite sets and

‣Q is the set of states
‣Σ is the input alphabet not containing 

a special blank symbol (~)
‣Γ is the tape alphabet, where ~ ∈ Γ 

and Σ ⊆ Γ

‣δ: Q×Γ → Q×Γ×{L,R} is the transition 
function



Formal Definition of a TM
Definition: A Turing Machine is a 7-tuple 

(Q,Σ,Γ,δ,q0,qaccept,qreject), 
where Q, Σ, and Γ are finite sets and

‣q0 ∈ Q is the start state

‣qaccept ∈ Q is the accept state

‣qreject ∈ Q is the reject state, 
where qreject ≠ qaccept

Definition: A Turing Machine is a 7-tuple 
(Q,Σ,Γ,δ,q0,qaccept,qreject), 
where Q, Σ, and Γ are finite sets and



What Is the Transition Function?
Q = set of states, Γ = tape alphabet

δ: Q × Γ → Q × Γ × {L,R}
Given:

The current internal state ∈ Q
The symbol on the current tape cell ∈ Γ

Then δ tells us what the TM does:
Changes to new internal state ∈ Q
May write a new symbol ∈ Γ
   and move one cell left or right

,S}



Computing with a TM M 
M receives input w = w1w2…wn∈Σ* on 
“leftmost” n squares of tape

• Rest of tape is blank (all ~ symbols)

Head position begins at leftmost square 
of input
Computation follows rules of δ
If model is infinite to the right only, 
head never moves left of leftmost square

• If δ says to move L there, head stays put!



Completing Computation
Continue following δ transition rules until 
M reaches qaccept or qreject

• Halt at these states

May never halt if the machine never 
transitions to one of these states!



TM Addition Example
We want to create a TM to add two numbers
Use a simple tape alphabet {0,1} plus the 
blank symbol
Represent a number n by a string of n+1 1’s 
terminated by a 0
Input to compute 3+4 looks like this:

1 1 1 1 0 1 1 1 1 1 0 ☐ ꔇ
⬆



Result of the TM Addition Example

Note that the TM is initially positioned on the 
leftmost cell of the input.

When the TM halts in the accept state, it must 
also be on the leftmost cell of the output.

1 1 1 1 1 1 1 1 1 0 ☐ ☐ ꔇ
⬆

1 1 1 1 0 1 1 1 1 1 0 ☐ ꔇ
⬆



Breaking Down the Addition Problem
(Computer Scientists like to simplify)

A successor TM appends a 1 to the right 
end of a string of 1’s

¬

¬



The Successor Subroutine

The TM starts in the initial state q0, 
positioned on the leftmost of a string of 1’s

If it sees a 1, it writes a 1, moves right, and 
stays in state q0

If it sees a 0, it writes a 1 and moves to q1

It then returns to the left



Successor Subroutine State Transitions
< original state, input, output, new state, action >
< q0, 1, 1, q0, R >

< q0, 0, 1, q1, S >

< q1, 1, 1, q1, L >

< q1, ☐, ☐, q2, R >



TM State Interpretation
q0 – the TM has seen only 1’s so far and is 
scanning right
q1 – the TM has seen its first 0 and is 
scanning left
q2 – the TM has returned to the leftmost 1 
and halts.



From Successor TM to Addition TM
The successor TM will join the two blocks 
of n+1 1’s and m+1 1’s into a single block 
of n+m+3 1’s

To complete the computation, knock off  
two 1’s from left end (states q2 and q3)



TM Configurations
The configuration of a Turing machine is 
the current setting

• Current state
• Current tape contents
• Current tape location

Notation uqv
• Current state = q
• Current tape contents = uv

• Only ~ symbols after last symbol of v
• Current tape location = first symbol of v



Configuration C1 Yields C2

C1 yields C2 if the TM can legally go 
from C1 to C2 in one step

• Assume a,b ∈ Γ and u,v ∈ Γ*

• uaqibv yields uqkacv if δ(qi,b)=(qk,c,L)
• uaqibv yields uacqkv if δ(qi,b)=(qk,c,R)

Special cases if head is at beginning or end of tape
• qibv~ yields qkcv~ if δ(qi,b)=(qk,c,L) and 

tape head is at beginning of tape

• uaqi~ yields uacqk~ if δ(qi,~)=(qk,c,R)



Special Configurations
Start configuration

• q0w

Halting configurations
• Accepting configuration: uqacceptv

• Rejecting configuration: uqrejectv
u, v ∈ Γ*



Strings Accepted by a TM
A Turing machine M accepts input 

sequence w if a sequence of 
configurations C1, C2, …, Ck exist, where
•C1 is the start configuration of M on input w

•Each Ci yields Ci+1 for i = 1, 2, …, k-1

•Ck is an accepting configuration



Language of a TM

The language of M, denoted L(M), is
L(M) = {w | M accepts w}

A language is called Turing-recognizable 
if some Turing machine recognizes it

M halts and Accepts for every string in the language 

M can either Reject or Run Forever for strings not in the language

L(M) = {w | M accepts w}



Deciders
A Turing machine is called a decider if every 
string in Σ* is either accepted or rejected
A language is called Turing-decidable if 
some Turing machine decides it

• These languages are often just called decidable

Deciders will always halt



Example
Write a TM that accepts all strings of the 
form 101001000100001…

• Start with a 1
• End with a 1
• Progressively more 0’s between consecutive 1’s

1010010001



Design
Check first symbol is a 1

• If not reject

Move right and check if second symbol 
is a 0

• If not reject
• If so, replace with X and begin recursion

1010010001~1X10010001~



Recursion (High Level)
Go back and forth on either side of each 1

• Replace 0 on right side of 1 with an X
• Replace X on left side of 1 with a Y

After all X’s on left side of 1 are replaced 
with Y’s, there should be exactly one 0 on 
the right side that has not been X’ed

• If not, reject
• If so, replace with X and recurse

1X10010001~1X1X010001~1Y1X010001~1Y1XX10001~1Y1XX1X001~1Y1XY1X001~1Y1XY1XX01~1Y1YY1XX01~1Y1YY1XXX1~



Exit Condition
If you begin to look for the next group of 0’s 
and reach a ~ then accept

1Y1YY1XXX1~

accept

1010010001 



Design a Turing machine that accepts…
1. any string in {a,b}* after first making a 

copy on the tape

2. language {w ∈ {a,b}* | |w| is even}
3.    "   { anbm | n>m }
4.    "   {anbman+m | n≥0 and m≥1}
5.    "   { wwR | w∈{a,b}* }
6.    "   { w∈{a,b}* | w has more a’s than b’s }



TM 1
Design a Turing machine to accept any 
string in {a,b}* after making a copy of it on 
the tape

• The tape will start with w 
• After TM processes the string, the tape should 

read ww

a b a a b a ~

a b a ~ ~ ~ ~



TM 1 Design
Read symbol

• If a, replace with x, move to end and write x if first time, 
otherwise write a

• If b, replace with y, move to end and write y if first time, 
otherwise write b

Move left to first x or y
Move left to next x or y

• If x, replace with a and move right
• If y, replace with b and move right

Read symbol at tape head
• If x, replace with a and accept
• If y, replace with b and accept
• If neither, loop to beginning

a b a ~ ~ ~ ~



TM 1 Design
Read symbol

• If a, replace with x, move to end and write x if first time, 
otherwise write a

• If b, replace with y, move to end and write y if first time, 
otherwise write b

Move left to first x or y
Move left to next x or y

• If x, replace with a and move right
• If y, replace with b and move right

Read symbol at tape head
• If x, replace with a and accept
• If y, replace with b and accept
• If neither, loop to beginning

a b a a b a ~ accept
a b a ~ ~ ~ ~



Copy Machine

a → x,R

b→y,R

~ → L

qaccept

a → R 
b → R

a → R 
b → R

a → L 
b → L 
~ → L~ → x,R

~ → y,R

x → L 
y → L

a → L 
b → L

x → a,R 
y → b,R a→ x,R

b→ y,R

a,b,x,y → R

a,b,x,y → R

~ → a,R

~ → b,R x → a,R 
y → b,R

qreject

start state q1; accept state qaccept; reject state qreject

scan right to end; scan left to x or y; write a,b,x,y

empty string



Variants of Turing Machines
Robustness of model

• Varying the model 
     does not change the power

Simple variant of TM model
• Add “stay put” direction

Other variants
• More tapes (Multitape)
• Nondeterministic



Multitape Turing Machines
Same as standard Turing Machine, but have 
several tapes
TM definition changes only in definition of δ

δ : Q × Гk → Q × Гk × {L,R}k



Equivalence of Machines
Theorem:  Every multitape Turing machine 

has an equivalent single tape Turing 
machine

Proof method: construction



Equivalent Machines

M

0  1  ~  ~  ~  ~ ~  ~

a  a  a  ~  ~  ~  ~  ~

a  b  ~  ~  ~ ~  ~  ~

#  0  1  #  a  a  a  #  a  b #  ~  ~S



Simulating k-tape Behavior
Single tape start string is

#w#~#...#~#
Each move proceeds as follows:

• Start at leftmost slot
• Scan right to (k+1)st # to find symbol at each 

virtual tape head
• Do a second pass making updates indicated by 

the k-tape transition function
• When a virtual head moves onto a #, shift the 

string to right



Corollary
Corollary: A language is Turing-recognizable 

if and only if some multitape Turing 
machine recognizes it.



Example
Using 2-tape Turing machine, write a 
copy machine

• Copy tape 1 to tape 2
• Move tape 1 to beginning
• Copy tape 1 to tape 2
• Accept



Copy Machine

{a,~}→ {x,a},{R,R} 
{b,~}→ {y,b},{R,R}

{~,~} → {L,L}

qaccept

~,~ → {L,S}
{x,~} → {a,a},{R,R} 
{y,~} → {b,b},{R,R}

{~, ,~}→ {R,R}

qreject{a,~}→ {a,a},{R,R} 
{b,~}→ {b,b},{R,R}

{a,~}→ {L,S} 
{b,~}→ {L,S}

{a,~}→ {a,a},{R,R} 
{b,~}→ {b,b},{R,R}

empty string

em
pty string



Nondeterministic Turing Machines
Same as standard Turing machines, but 
may have one of several choices at any 
point

δ : Q × Г → P(Q × Г × {L,R})



Equivalence of Machines
Theorem:  Every nondeterministic Turing 

machine has an equivalent deterministic 
Turing machine

Proof method: construction
Proof idea:  Use a 3-tape Turing machine to 

deterministically simulate the 
nondeterministic TM.  First tape keeps 
copy of input, second tape is computation 
tape, third tape keeps track of choices.



Proof Idea

M

0  1  0  1  ~  ~ ~  ~

a  a  #  0  1  ~  ~  ~

1  1  2  1  3 ~  ~  ~

Input tape 
(never changes)

Computation 
tape

Decision path

Try new decision paths until the string is accepted



Tree Representation

Consider the nondeterministic calculations 
as a tree

• Each node represents a configuration
• A node for configuration C1 has one child for 

each configuration C2 such that C1 yields C2

• Root of tree is configuration q1w
• A configuration may appear  

more than once in the tree
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Intuition



Example
Nondeterministic TM that accepts  

{ ww | w ∈ {a,b}* }
• Use 2 tapes
• Copy input to tape 2
• Position heads at beginning of tapes
• Move both heads right simultaneously



Nondeterministic Solution
Nondeterministically choose the midpoint

• Mark this point on tape 2 and return tape 2’s 
head to beginning

Compare strings
• If tape head points to ~ on tape 1 and midpoint 

marker on tape 2 then accept
• Otherwise, if all possible midpoints have been 

tried then reject
• Otherwise, try a new midpoint



Tree Representation
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Deterministic Equivalent
Assume midpoint is at beginning

• If so accept
• If not …

Assume midpoint is after first symbol
• If so accept
• If not …

Assume midpoint is after second symbol
• If so accept
• If not …

etc. …



How Should It Search the Tree?
Breadth first search

• Search all possibilities involving k steps before 
searching any possibilities involving 
(k+1) steps

What’s wrong with depth first search?
• If some sequence of choices results in never 

reaching a halting state, we will never get to 
the accept state



When Does It Halt?
When it reaches an accept state

• Return accept



Will It Halt on Strings in the Language?
Yes 

• Let b be the largest number of children of any 
node
• Can we be sure b is finite?

• Let k be the minimum number of steps it takes 
to get to the accept state

• This method will take at most bk steps to get to 
the accept state



What about strings not in the language?

Won’t halt
• That’s okay



Equivalence of Approaches
Corollary:  A language is Turing-recognizable 

if and only if some nondeterministic Turing 
machine recognizes it.



Equivalence of Approaches
Corollary:  A language is Turing-decidable 

if and only if some nondeterministic 
Turing machine decides it.

Proof:  Very similar to the proof we just 
outlined



Enumerators

Instead of reading an input and 
processing it, enumerators start with an 
empty tape and print out strings from Σ*

M
Printer

1  1  2  1  3 ~  ~  ~

aaba 

  bbcc 

   aaaaabb



Machine Equivalence
Theorem:  A language is Turing-recognizable 

if and only if it is enumerated by some 
enumerator.

Proof technique: 
Construction in each direction



TM Accepts Enumerator Language
TM = “On input w:

• Run enumerator E.  Every time E prints a 
string, compare it to w.

• If w appears in the output, accept.”



Enumerator Accepts TM Language
Let s1, s2, s3, … be all the strings in Σ*

E = “Ignore the input.
• For i = 1, 2, 3, …

• Run M for i steps on each input s1, s2, …, si

• Whenever M accepts a string, print it  ”



What Is an Algorithm?
Intuitively, an algorithm is anything that can 

be simulated by a Turing machine  
(Church-Turing Thesis)

• Inputs can be represented as strings
• Graphs
• Polynomials
• Automata
• Etc.


