Introduction to the Theory of Computation

Set 6 - Context-Free Languages

Context-Free Languages

The shortcoming of finite automata is that each state has very limited meaning

- FA have no memory of where they've been only knowledge of where they are
- Example: $\{0 \mathrm{n} 1 \mathrm{n} \mid \mathrm{n} \geq 0\}$

Context-free grammars are a more powerful method of describing languages

Example Grammar

Grammars use substitution to maintain knowledge
$\Sigma=\{()$,

$$
\begin{aligned}
& S \rightarrow(S) \quad S \rightarrow(S)|S S|() \\
& S \rightarrow S S \\
& S \rightarrow()
\end{aligned}
$$

All possible legal parenthesis pairings can be expressed by consecutive applications of these rules

Is this a regular language?

Example Context Free Grammar $S \rightarrow(S)|S S|()$

(()())(())

$\mathrm{S} \rightarrow \mathrm{SS}$
$\rightarrow(\mathrm{S}) \mathrm{S}$
$\rightarrow(\mathrm{S})(\mathrm{S})$
\rightarrow (SS)(S)
\rightarrow (SS)(())
$\rightarrow(() S)(())$
$\rightarrow(())(())$
The sequence of substitutions is called a derivation

Example CFG Parse Tree $\mathbf{S} \rightarrow(\mathbf{S})|\mathbf{S S}|()$

Example 2
 S \rightarrow Sb I Bb
 $\mathrm{B} \rightarrow \mathrm{aBb}$ I aCb
 C $\rightarrow \varepsilon$

Derivation for aaabbbbb
$\mathbf{S} \rightarrow \mathbf{S b}$
\rightarrow Bbb
\rightarrow aBbbb
\rightarrow aaBbbbb
\rightarrow aaaCbbbbb
$\rightarrow \mathbf{a a a}$ bbbbbb = aaabbbbb

Example 2 Parse Tree

S \rightarrow Sb I Bb
 B $\rightarrow \mathrm{aBb}$ I aCb
 C $\rightarrow \varepsilon$

aaabbbbb

$$
\begin{aligned}
& \text { Example } 2 \\
& \mathrm{~S} \rightarrow \mathrm{Sb} \operatorname{IBb} \\
& \mathrm{~B} \rightarrow \mathrm{aBb} \operatorname{laCb} \\
& \mathrm{C} \rightarrow \varepsilon
\end{aligned}
$$

What language does this grammar accept?
$\left\{a^{n b m} \mid m>n>0\right\}$
Can this CFG be simplified?
Yes.
Replace $\mathrm{B} \rightarrow \mathrm{aCb}$ with $\mathrm{B} \rightarrow \mathrm{ab}$ and remove $\mathrm{C} \rightarrow \varepsilon$

Context-Free Grammar Definition

A context-free grammar is a 4-tuple (V, $\Sigma, \mathrm{R}, \mathrm{S})$, where

1. V is a finite set called the variables
2. Σ is a finite set, disjoint from V , called the terminals
3. R is a finite set of rules, with each rule being a variable and a string of variables and terminals
4. $\mathbf{S} \in \mathrm{V}$ is the start variable

Definitions

If \mathbf{u}, \mathbf{v}, and \mathbf{x} are strings of variables and terminals, and $A \rightarrow x$ is a rule of the grammar, we say uAv yields uxv

Denoted uAv $\Rightarrow \mathbf{u x v}$
If a sequence of rules leads from u to v, $u \Rightarrow u_{1} \Rightarrow u_{2} \Rightarrow \ldots \Rightarrow v$, we denote this

$$
u \stackrel{*}{\Rightarrow} v
$$

The language of the grammar is

$$
\left\{\mathbf{w} \in \Sigma^{*} \mid \mathbf{S} \stackrel{*}{\Rightarrow} \mathbf{w}\right\}
$$

Example CFG

$$
\begin{aligned}
& A \rightarrow \mathrm{Ab} \mathrm{I} \mathrm{Bb} \\
& \mathrm{~B} \rightarrow \mathrm{aBb\mid ab}
\end{aligned}
$$

$\mathrm{V}=\{\mathrm{A}, \mathrm{B}\}$
$\Sigma=\{\mathrm{a}, \mathrm{b}\}$
R is the set of rules listed above
$\mathrm{S}=\mathrm{A}$
The language of this grammar is

$$
\left\{w \in\{a, b\}^{*} \mid w=a^{n} b m, m>n>0\right\}
$$

Designing CFG's

Requires creativity
There are some guidelines to help

- Union of two CFG's
- Converting a DFA to a CFG
- Linked terminals
- Recursive behavior

Designing the Union of CFGs

For the union of k CFGs, design each CFG separately with starting variables $S_{1}, S_{2}, \ldots, S_{k}$ and combine using the rule

$$
S \rightarrow S_{1}\left|S_{2}\right| \ldots \mid S_{k}
$$

What is a CFG for the following language?
\{aibick li, j, k ≥ 0 and $\mathrm{i}=\mathrm{j}$ or $\mathrm{j}=\mathrm{k}\}$
$\left\{\right.$ aibic $^{\mathrm{k}} \mathrm{i}, \mathrm{j}, \mathrm{k} \geq 0$ and $\left.\mathrm{i}=\mathrm{j}\right\} \cup\left\{\right.$ aibick $^{\mathrm{l}} \mathrm{i}, \mathrm{j}, \mathrm{k} \geq 0$ and $\left.\mathrm{j}=\mathrm{k}\right\}$
\{aibick $\mathrm{i}, \mathrm{j}, \mathrm{k} \geq 0$ and $\mathrm{i}=\mathrm{j}$ or $\mathrm{j}=\mathrm{k}\} \quad$ Example
First design \{aibick $\mid \mathrm{i}, \mathrm{j}, \mathrm{k} \geq 0$ and $\mathrm{i}=\mathrm{j}\}$

Then design \{aibick li,j,k $\mathbf{0}$ and $\mathrm{j}=\mathrm{k}\}$

Finally, add the "unifying" rule

Converting DFA's into CFG's

For each state q_{i} in the DFA, make a variable R_{i} for the CFG.

For each transition rule $\delta\left(q_{i} ; a\right)=q_{k}$ in the DFA, add the rule $\mathrm{R}_{\mathrm{i}} \rightarrow \mathrm{aR} \mathrm{R}_{\mathrm{k}}$ to the CFG

For each accept state q_{a} in the DFA, add the rule $\mathrm{R}_{\mathrm{a}} \rightarrow \varepsilon$

If q_{0} is the start state in the DFA, then R_{0} is the starting variable in the CFG

DFA to CFG Example

$\mathrm{V}=\left\{\mathrm{R}_{1}, \mathrm{R}_{\mathbf{2}}, \mathrm{R}_{3}\right\}$

$$
\Sigma=\{0,1\}
$$

$R_{1} \rightarrow 0 R_{3}\left|1 R_{2} \quad R_{2} \rightarrow 0 R_{1}\right| 1 R_{3} \quad R_{3} \rightarrow 0 R_{3} \mid 1 R_{3}$
$\mathrm{R}_{2} \rightarrow \varepsilon$
R_{1} is the start symbol

Linked Terminals

Terminals may be "linked" to one another in that they have the same (or related) number of occurrences

$$
\begin{aligned}
& \{0 n 1 n \mid n \geq 0\} \\
& \left\{x^{n} y^{2 n} \mid n>0\right\}
\end{aligned}
$$

Add terminals simultaneously

$$
\begin{aligned}
& S \rightarrow 0 S 1 \mid \varepsilon \\
& S \rightarrow x S y y \mid x y y
\end{aligned}
$$

Recursive Behavior

Some languages may be built of pieces that are within the language

For example, legal pairing of parentheses
For these languages, you will want a recursive rule

For example, $\mathbf{S} \rightarrow \mathbf{S S}$
Not all recursive rules will be that easy!

Example of Recursive Rules

Construct a CFG accepting all strings in $\{0,1\}^{*}$ that have equal numbers of 0 's and 1 's

$$
S \rightarrow \text { S0S1S I S1S0S I } \varepsilon
$$

$$
\begin{aligned}
& S \rightarrow \text { AOA1A I A1AOA I } \varepsilon \\
& A \rightarrow \text { S1S0S I S0S1S I }
\end{aligned}
$$

"mutual recursion"

Consider the CFG (\{S\},\{0,1,+,×\},R,S), where the rules of R are

$$
S \rightarrow 0|1| S+S \mid S \times S
$$

Derive the string $0 \times 1+1$
Draw the associated parse tree

Ambiguity

$S \rightarrow 0|1| S+S \mid S \times S$

$0 \times 1+1$

Different parse trees!
$(0 x(1+1))=0$
$((0 \times 1)+1)=1$

Definition of Ambiguity

Ambiguity exists when a context-free grammar G generates a string w and there are two different parse trees that generate w

- Different derivations that differ only in order do not indicate ambiguity

$$
(\{A, S, T\},\{\bigcirc, \mathbb{Q}, \odot\},\{S \rightarrow \circledast A T, A \rightarrow \odot, T \rightarrow \mathbb{Q},\}, S)
$$

Derivation \& Ambiguity

A derivation of a string w in a grammar G is a leftmost derivation if every step of the derivation replaced the leftmost variable
A string is derived ambiguously in CFG G if it has two or more different leftmost derivations
leftmost $ᄀ$ leftmost

$\mathrm{S} \rightarrow \mathrm{AT}$
$\rightarrow \infty \mathrm{OT}$
$\rightarrow \infty \mathrm{O}$

$$
\begin{gathered}
S \rightarrow C A T \\
\rightarrow \infty A \\
\rightarrow \infty \\
\rightarrow \infty
\end{gathered}
$$

Derivation \& Ambiguity

A derivation of a string win a grammar G is a leftmost derivation if every step of the derivation replaced the leftmost variable

A string is derived ambiguously in CFG G if it has two or more different leftmost derivations
The grammar G is ambiguous if it generates some string ambiguously

- Some grammars are inherently ambiguous

Chomsky Normal Form

Method of simplifying a CFG
Definition: A context-free grammar is in Chomsky normal form if every rule is of one of the following forms

$$
\begin{aligned}
& \mathrm{A} \rightarrow \mathrm{BC} \\
& \mathrm{~A} \rightarrow \mathrm{a}
\end{aligned}
$$

where a is any terminal, A is any variable, and B and C are any variables other than the start variable.

If S is the start variable then the rule $S \rightarrow \varepsilon$ is the only permitted ε rule

CFG and Chomsky Normal Form

Theorem: Any context-free language is generated by a context-free grammar in Chomsky normal form.
Proof idea: Convert any CFG to one in Chomsky normal form by removing or replacing all rules in the wrong form

1. Add a new start symbol
2. Eliminate ε rules of the form $A \rightarrow \varepsilon$
3. Eliminate unit rules of the form $A \rightarrow B$
4. Convert remaining rules into proper form

Convert a CFG to Chomsky Normal Form

 1. Add a new start symbol Create the following new rule$$
S_{0} \rightarrow S
$$

where S is the start symbol and S_{0} is not used in the CFG

Convert a CFG to Chomsky Normal Form

2. Eliminate all ε rules $A \rightarrow \varepsilon$, where A is not the start variable

For each rule with an occurrence of A on the right-hand side, add a new rule with the A deleted
$R \rightarrow u A v$ becomes $R \rightarrow u A v I u v$
$R \rightarrow u A v A w$ becomes $R \rightarrow$ uAvAw I uvAw I uAvw I uvw
If we have $R \rightarrow A$, add $R \rightarrow \varepsilon$ unless we had already removed $R \rightarrow \varepsilon$

Convert a CFG to Chomsky Normal Form

3. Eliminate all unit rules of the form $A \rightarrow B$

For each rule $B \rightarrow u$, add a new rule $A \rightarrow u$, where u is a string of terminals and variables, unless this rule had already been removed
Repeat until all unit rules have been replaced

Convert a CFG to Chomsky Normal Form

4. Convert remaining rules into proper form What's left?

Replace each rule $A \rightarrow u_{1} u_{2} \ldots u_{k}$, where $k \geq 3$ and u_{i} is a variable or a terminal, with $k-1$ rules

$$
A \rightarrow u_{1} A_{1} \quad A_{1} \rightarrow u_{2} A_{2} \quad \ldots \quad A_{k-2} \rightarrow u_{k-1} u_{k}
$$

Convert a CFG to Chomsky Normal Form

4. Convert remaining rules into proper form What's left?

The formalism requires B and C to be variables in $A \rightarrow B C$, so must move all terminals to unit productions
For every terminal on the right of a nonunit production, add a substitute variable $A \rightarrow b C$ becomes $A \rightarrow B C \& B \rightarrow b$

Example

$S \rightarrow S_{1} \mid S_{2}$
$S_{1} \rightarrow S_{1} b \mid X b$
$\mathrm{X} \rightarrow \mathrm{aXb}$ Iabl ε
$\mathrm{S}_{2} \rightarrow \mathrm{~S}_{2} \mathrm{a}$ I Ya
Y \rightarrow bYalbal ε

Step 1: Add a new start symbol

Example

$\mathrm{S}_{0} \rightarrow \mathrm{~S}$

$S \rightarrow S_{1} I S_{2}$
$S_{1} \rightarrow S_{1} b \mid X b$
$X \rightarrow \mathbf{a X b}$ Iabl ε
$\mathrm{S}_{2} \rightarrow \mathrm{~S}_{2} \mathrm{a}$ I Ya
Y \rightarrow bYalbal ε

Step 2: Eliminate ε rules

Example

$$
\begin{aligned}
& S_{0} \rightarrow S \\
& S \rightarrow S_{1} \mid S_{2} \\
& S_{1} \rightarrow S_{1} b|X b| b \\
& X \rightarrow a X b \mid a b \\
& S_{2} \rightarrow S_{2} a|Y a| a \\
& Y \rightarrow \text { bYa l ba }
\end{aligned}
$$

Step 3: Eliminate all unit variable rules

Example

$S_{0} \rightarrow S_{1} b \mid X b l b l S_{2} a l Y a l a$ $S \rightarrow S_{1} b|X b| b\left|S_{2} a\right| Y a l a$
$S_{1} \rightarrow S_{1} b \mid X b / b$
$X \rightarrow a \mathrm{Xb}$ I ab
$\mathrm{S}_{2} \rightarrow \mathrm{~S}_{2} \mathrm{al} \mathrm{YaI} \mathrm{a}$
Y \rightarrow bYalba

Step 4: Convert remaining rules to proper form

Example

$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1} \mathrm{BIIXBI}$ I $\mathrm{S}_{2} A \mid Y A I a$ $S \rightarrow S_{1} B I X B I b I S_{2} A I Y A I a$ $\mathrm{S}_{1} \rightarrow \mathrm{~S}_{1}$ BIXBIb
$X \rightarrow A X_{1} I A B$
$\mathrm{X}_{1} \rightarrow \mathrm{XB}$
$\mathrm{S}_{2} \rightarrow \mathrm{~S}_{2} \mathrm{AlYAla}$
$Y \rightarrow B Y_{1} I B A$
$Y_{1} \rightarrow Y A$
$A \rightarrow a \quad B \rightarrow b$

PushDown Automata (PDA)

Similar to finite automata, but for CFL's
Finite automata are not adequate for CFL's because they cannot keep track of what what's previously been done

- At any point, we only know the current state, not previous states

Need memory

- PDA are finite automata with a stack

Finite Automata and PDA Schematics

Example

Language accepted: $\{0 n 1 \mathrm{n} \mid \mathrm{n} \geq 0\}$

Differences Between PDA's and NFA's

Transitions read a symbol of the string and push a symbol onto or pop a symbol off of the stack

Stack alphabet is not necessarily the same as the alphabet for the language
e.g., $\$$ marks bottom of stack in previous
($0^{n 1} 1^{n}$) example

Definition of Pushdown Automaton

A pushdown automaton is a 6-tuple
($\mathbf{Q}, \Sigma, \Gamma, \delta, \mathbf{q}_{0}, \mathrm{~F}$), where $\mathbf{Q}, \Sigma, \Gamma$, and F are all finite sets, and

1. Q is the set of states
2. Σ is the input alphabet
3. Γ is the stack alphabet
4. $\delta: \mathbf{Q} \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \rightarrow \mathcal{P}\left(\mathbf{Q} \times \Gamma_{\varepsilon}\right)$ is the transition function
5. $q_{0} \in Q$ is the start state, and 6. $F \subseteq Q$ are the accept states.

Strings Accepted by a PDA

Let w be a string in Σ^{*} and M be a PDA.

 w is in $L(M) \Leftrightarrow w$ can be written $w=w_{1} w_{2} \ldots w_{n}$, where each $w_{i} \in \Sigma_{\varepsilon}$, and there exist $r_{0}, r_{1}, \ldots, r_{n} \in Q$ and $\mathbf{s}_{0}, s_{1}, \ldots, s_{n} \in \Gamma^{*}$ satisfying the following:- $r_{0}=q_{0}$ and $\underline{s_{0}=\varepsilon}$
M starts in the start state with an empty stack
- $\left(r_{i+1}, b\right) \in \delta\left(r_{i}, w_{i+1}, a\right)$, where $s_{i}=a t$ and $s_{i+1}=b t$ for some $\mathbf{a}, \mathrm{b} \in \Gamma_{\varepsilon}$ and $t \in \Gamma^{*}$

M moves according to transition rules for the state, input, and stack

- $r_{n} \in F$

Accept state occurs at input end

The Transition Rule

$\left(r_{i+1}, b\right) \in \delta\left(r_{i}, w_{i+1}, a\right)$, where $s_{i}=a t$ and $s_{i+1}=b t$ for some $\mathbf{a , b} \in \Gamma_{\varepsilon}$ and $t \in \Gamma^{*}$

The top symbol is

- Pushed if $\mathrm{a}=\varepsilon$ and $\mathrm{b} \neq \varepsilon$
- Popped if $\mathrm{a} \neq \varepsilon$ and $\mathrm{b}=\varepsilon$
- Changed if $\mathbf{a} \neq \varepsilon$ and $b \neq \varepsilon$
- Unchanged if $\mathrm{a}=\varepsilon$ and $\mathrm{b}=\varepsilon$

Symbols below the top of the stack may be considered, but not changed

That is t 's role

Example

Find δ for the PDA that accepts all strings in $\{0,1\}^{*}$ with the same number of 0 's and 1 's

- Need to keep track of "equilibrium point" so use a $\$$ on the stack
- If stack top is not \$, it contains the symbol currently dominating in the string

Example

Find δ for the PDA that accepts all strings in $\{0,1\}^{*}$ with the same number of 0 's and 1 's

- Push a symbol on the stack as it is read if

It matches the top of the stack, or
The top of stack is \$

- Pop the symbol off the top of the stack if it reads a 0 and the top of stack is 1 or it reads a 1 and the top of stack is 0 .

Example

Example

This PDA is equivalent to the one on the previous slide

Example

Example

$$
\begin{array}{llllll}
0 & 1 & 1 & 1 & 0 & 0
\end{array}
$$

Example

Nested parentheses

Equivalence of PDAs and CFLs

Theorem: A language is context free if and only if some pushdown automaton recognizes it

Proved in two lemmas -
one for the "if" direction and one for the "only if" direction

CFLs Are Recognized by PDAs

Lemma: If a language is context free, then some pushdown automaton recognizes it

Proof idea:
Construct a PDA following CFG rules

Constructing the PDA

You can read any symbol in Σ when that symbol is at the top of the stack

- Transitions of the form $\mathrm{a}, \mathrm{a} \rightarrow \varepsilon$

The rules indicate what is pushed onto the stack: when a variable A is on top of the stack and there is a rule $A \rightarrow W$, you pop A and push w
You go to the accept state only if the stack is empty

Informal Description of the PDA
 Place \$ and start variable on stack

Repeat forever...

1. If stack top is variable A, nondeterministically select an A rule and substitute the string on the RHS for A
2. If stack top is terminal a, read next symbol from input and compare to a. If match, repeat. If no match, reject this branch.
3. If stack top is $\$$, enter accept state. Accept input if no more input remains.

Idea of PDA construction for $A \rightarrow x B z$

Actual construction for $\mathrm{A} \rightarrow \mathrm{xBz}$

Notationally, we say $\delta(q, \varepsilon, A)=(q, x B z)$

Constructing the PDA

$Q=\left\{q_{\text {start }}, q_{\text {loop }}, q_{\text {accept }}\right\} \cup E$, where E is the set of states used for replacement rules onto the stack
Σ (the PDA alphabet) is the set of terminals in the CFG
Γ (the stack alphabet) is the union of the terminals and the variables and $\{\$\}$ (or some other suitable placeholder)

Constructing the PDA

δ is comprised of several rules

$$
\delta\left(\mathbf{q}_{\text {start }}, \varepsilon, \varepsilon\right)=\left(\mathbf{q}_{\text {loop }}, \mathbf{S} \$\right)
$$

Start with placeholder on the stack and with the start variable
$\delta\left(q_{\text {loop }}, \mathbf{a}, \mathbf{a}\right)=\left(\mathbf{q}_{\text {loop }}, \varepsilon\right)$ for every $\mathbf{a} \in \Sigma$
Terminals may be read off the top of the stack
$\delta\left(q_{\text {loop }}, \varepsilon, A\right)=\left(q_{\text {loop }}, w\right)$ for every rule $A \rightarrow \mathbf{w}$
Implement replacement rules
$\delta\left(\mathbf{q}_{\text {loop }}, \varepsilon, \$\right)=\left(\mathbf{q}_{\text {accept }}, \boldsymbol{\varepsilon}\right)$
Accept when the stack is empty

S \rightarrow SS I (S) I () Read (()())

Example

Recap

Finite automata (both deterministic and nondeterministic) accept regular languages

- Weakness: no memory

Pushdown automata accept context-free languages

- Add memory in the form of a stack
- Potential Weakness: stack is restrictive

How can we tell that a language is not CF?

The pumping lemma for regular languages

The pumping lemma for regular languages depends on the structure of the DFA and the fact that a state must be revisited

- Only a finite number of states

The pumping lemma for CFG's

What might be repeated in a CFG?

- The variables

$$
\begin{aligned}
& \mathrm{T} \rightarrow \mathrm{uRz} \\
& \mathrm{R} \rightarrow \mathrm{vRy} \mid \mathrm{x}
\end{aligned}
$$

$v \& y$ will be repeated simultaneously

The pumping lemma for CFG's

$$
\begin{aligned}
& \mathrm{T} \rightarrow \mathrm{uRz} \\
& \mathrm{R} \rightarrow \mathrm{vRy} \mid \mathrm{x}
\end{aligned}
$$

The pumping lemma for CFG's

$$
\begin{aligned}
& \mathrm{T} \rightarrow \mathrm{uRz} \\
& \mathrm{R} \rightarrow \mathrm{vRy} \mid \mathrm{x}
\end{aligned}
$$

The pumping lemma for CFL's

Theorem: If \mathbf{A} is a context-free language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into five pieces $s=u v x y z$ satisfying the conditions:

1. For each $i \geq 0, u v^{i} x y^{i} z \in A$
2. $|v y|>0$
3. $|v x y| \leq p$

Finding the pumping length of a CFL

 Let b equal the longest right-hand side of any rule (assume $b>1$)- Each node in the parse tree has at most b children
- At most bh nodes are h steps from the start node
Let p equal $b^{I V I+2}$, where IVI is the number of variables
- Tree height is at least IVI+2

Example

Show A is not context free, where

$$
A=\left\{a^{n} \mid n \text { is prime }\right\}
$$

Proof:

Assume A is context-free and let p be the pumping length of A.
Let $w=a^{n}$ for any $n \geq p$.
By the pumping lemma, w=uvxyz such that $|v x y| \leq p,|v y|>0$, and $u v^{i} x y^{i z} \in A$ for all $i=0,1,2, \ldots$

Example (cont.)

Show A is not context free, where

$$
A=\left\{a^{n} \mid n \text { is prime }\right\}
$$

Clearly, vy=ak for some k
Consider the string $u v^{n+1} x y^{n+1} z$
This string adds n copies of a^{k} to \boldsymbol{w} - i.e., this is $a^{n+n k}$

Since the exponent is $n(1+k)$, the length of the string is not prime, thus the string is not in A, which contradicts the pumping lemma. Therefore, A is not context free.

Closure Properties of CFLs

If A and B are context free languages then:
A^{R} is a context-free language \checkmark
A^{*} is a context-free language \boldsymbol{V}
$A \cup B$ is a context-free language V
Is \bar{A} (complement) a context-free language?
Is $A \cap B$ a context-free language?

Closure Properties of CFLs

If A and B are context free languages then:
Is $A \cap B$ a context-free language?
Consider $A=\left\{a^{i} b^{\mathrm{j}} \mathrm{c}^{\mathrm{k}} \mathrm{li}=\mathrm{j}\right\}$ and $B=\left\{\mathrm{a}^{\mathrm{bj}} \mathrm{c}^{\mathrm{k}} \mathrm{lj}=\mathrm{k}\right\}$

$$
\begin{gathered}
A: \mathrm{S}_{\mathrm{A}} \rightarrow \mathrm{XC}, \mathrm{X} \rightarrow \mathrm{aXb}|\varepsilon, \mathrm{C} \rightarrow \mathrm{cC}| \varepsilon \\
B: \mathrm{S}_{\mathrm{B}} \rightarrow \mathrm{AY}, \mathrm{~A} \rightarrow \mathrm{aAI} \varepsilon, \quad \mathrm{Y} \rightarrow \mathrm{bYc} \mid \varepsilon \\
\\
\quad A \cap B=\left\{\mathrm{a}^{\mathrm{b}} \mathrm{bi}^{\mathrm{k}} \mid \mathrm{i}=\mathrm{j}=\mathrm{k}\right\}
\end{gathered}
$$

Does this language satisfy the pumping lemma?

$$
\begin{aligned}
\mathbf{s} \in L,|s| \geq p \Rightarrow s=u v x y z, & \text { uvixyiz } \in L \quad \forall i \geq 0 \\
& \mid v y l>0 \\
& |v x y| \leq p
\end{aligned}
$$

Closure Properties of CFLs

Consider $A=\left\{a^{i} b^{j} \mathrm{c}^{\mathrm{k}} \mathrm{li}=\mathrm{j}\right\}$ and $B=\left\{\mathrm{a}^{\mathrm{i}} \mathrm{b}^{\mathrm{c}} \mathrm{l} \mathrm{j}=\mathrm{k}\right\}$

$$
A \cap B=\left\{a^{i} b_{j} c^{k} l i=j=k\right\}
$$

Does this language satisfy the pumping lemma?

$$
\begin{aligned}
\mathbf{s} \in L,|s| \geq p \Rightarrow s=u v x y z, & \text { uvixyiz } \in L \quad \forall i \geq 0 \\
& |v y|>0 \\
& |v x y| \leq p
\end{aligned}
$$

Tryssappp ${ }^{p}$
lvyl>0 \Rightarrow vy contains at least one symbol
Ivxyl $\leq p \Rightarrow$ vxy contains at most 2 different symbols $u^{2} \mathbf{x y}^{2} z \notin A \cap B$ so $A \cap B$ is not a CFL

Closure Properties of CFLs

If A and B are context free languages then:
A^{R} is a context-free language V
A^{*} is a context-free language \mathcal{V}
$A \cup B$ is a context-free language \checkmark
\bar{A} is not necessarily a context-free language
$A \cap B$ is not necessarily a context-free language

