Introduction to the Theory of Computation

Set 5 — Nonregular Languages

Nonregular Languages

So far, we have explored several ways to identify regular languages

- DFA, NFA, GNFA, Regular Grammar, RE
- There are *many* nonregular languages
 - $\bullet \left\{ 0^n 1^n \mid n \ge 0 \right\}$
 - {101,101001,1010010001,...}
 - {w I w has the same number of 0s and 1s}

How can we tell if a language is not regular?

Property of Regular Languages

All regular languages can be generated by finite automata

States must be <u>reused</u> if the length of a string is greater than the number of states

If states are reused, there will be repetition

Proof Idea

Consider a string in the language whose length is greater than the number of states in the DFA that recognizes the language.

p = **IQI** the number of states in the **DFA**

If the DFA accepts a string s with $|s| \ge p$, then some state must be entered twice while processing s

"Pigeonhole" principle

Proof Idea

"Pigeonhole" principle

The Pumping Lemma

Theorem:

- If A is a regular language,
- then there is a number **p** where,
- if *s* is any string in A of length at least **p**, then *s* may be divided into three pieces,
- **s** = *xyz*, satisfying the following conditions
 - 1. for each $i \ge 0$, $xy^i z$ is in A
 - 2. l*y*l > 0, and
 - 3. l*xy*l ≤ **p**

p is called the pumping length of the language

Proof Idea

Consider a pumping length equal to the number of states in the DFA whose language is A pumping length = IQI

If A accepts a string *s* with $|s| \ge |Q|$, then some state must be entered twice while processing *s*

"Pigeonhole" principle

s = xyz1. for each $i \ge 0$, xy^iz is in A 2. |y| > 0, and 3. $|xy| \le p$

Using the Pumping Lemma

We can use the pumping lemma to prove a language B is <u>not</u> regular

Proof by contradiction

- Assume B is regular with pumping length p
- Find a string $w \in B$ with $|w| \ge p$
- Show that the pumping lemma is not satisfied
 - Show that any xyz cannot satisfy all of the properties of the pumping lemma (cannot be pumped)
 - You can choose a specific *w*, but you cannot choose a specific *xyz*!

Example

- **B={sbbs | s∈{a,b}*}**
- Assume B is regular and p is the pumping length of B
- **Consider the string w = a^pbba^p**
- $w \in B$ and $|w| \ge p$ so the pumping lemma applies
 - w = xyz, $|xy| \le p$, |y| > 0, $xy^iz \in B \forall i$

Example

Consider the string w = a^pbba^p $w \in B$ and $|w| \ge p$ so pumping lemma applies w = xyz, $|xy| \le p$, |y| > 0, $xy^iz \in B \forall i$ Since $|xy| \le p$ and w begins with xy, $xy = a^k$ for some $k \le p$ • $v = a^{j}$ for some j = 1, 2, ..., kIs xyⁱz∈B when i=2?

 $xy^2z = a^{p+j}bba^p \not\in B$

 Pumping lemma is contradicted, so B is *not regular*

Proof of Pumping Lemma Let A be any regular language Find DFA M=($Q, \Sigma, \delta, q_0, F$) with L(M)=A Let p=IQI Let $s=s_1s_2s_3...s_n$ be any string in A with $|s| = n \ge p$

Proof of Pumping Lemma (cont'd) $p=IQI \quad s=s_1s_2s_3...s_n \in A \quad |s| = n \ge p$ Let $r_1, r_2, r_3, ..., r_{n+1}$ be the sequence of

states entered while processing s

r₁=**q**₀

 $r_{n+1} \in F$

 $r_{i+1} = \delta(r_i, s_i)$

Proof of Pumping Lemma (cont'd) $p=IQI \quad s=s_1s_2s_3...s_n \in A \quad IsI = n \ge p$ $r_1, r_2, r_3, ..., r_{n+1} \quad r_1=q_0 \quad r_{n+1} \in F \quad r_{i+1}=\delta(r_i, s_i)$

Consider the first p+1 elements of this sequence

p+1 states must contain a repeated state

Let r_k be the first state to be repeated and let r_t be the second occurrence of this state $t \le p+1$

Proof of Pumping Lemma (cont'd)

t ≤ p+1

p=IQI $s=s_1s_2s_3...s_n \in A$ |s| = n ≥ pr₁, r₂, r₃, ..., r_{n+1} r₁=q₀ r_{n+1}∈F r_{i+1}= δ (r_i, s_i)

- Let $x = s_1 s_2 \dots s_{k-1}$
 - $y = s_k s_{k+1} ... s_{t-1}$
 - $z = s_t s_{t+1} \dots s_n$
 - x takes M from r_1 to r_k If k = 1, then $x = \varepsilon$
 - y takes M from r_k to r_t
 - *z* takes M from r_t to r_{n+1}, which is an accept state

Since r_k and r_t are the same state, M must accept $xy^i z$ for any i = 0, 1, 2, ...

Proof of Pumping Lemma (cont'd)

Have we satisfied the conditions of the theorem?

1. for each $i \ge 0$, $xy^i z$ is in A

-Yes

2. |*y*| > 0

-Yes, since t > k and $y = s_k s_{k+1} \dots s_{t-1}$

3. *lxyl* ≤ p

–Yes, since $t \le p+1$ and $xy = s_1s_2...s_{t-1}$

Regular Languages — Summary Let R be any language. The following are equivalent:

- 1. R is a regular language
- 2. R = L(M) for some finite automaton M, where M is a DFA, an NFA, or a GNFA
- 3. R is described by some regular grammar
- 4. R is described by some regular expression

If R can be shown *not* to have a finite pumping length, then R is *not regular*.

Pumping Lemma Example Use

B={ⁿ, ⁿ | n≥0}

- Assume B is regular. Let p be the pumping length given by the lemma.
- **Consider the string** $s = Q^{p} \leq Q^{p}$
- $s \in B$ and $|s| \ge p$ so the pumping lemma guarantees that s can be split into three pieces
 - s = xyz, $|xy| \le p$, |y| > 0, $xy^iz \in B \forall i$

B={ⁿⁿⁿ I n≥0} Pumping Lemma Example

S = ;;; ^p • • ^p

S = XYZ

 $|xy| \le p$

Cases to consider

- The string *y* consists only of *Q*'s.
- The string y consists only of
- The string y consists of both -'s and 's.

y consists only of ♀'s: xyyz has more ♀'s than ♥'s, so xyyz ∉ B y consists only of ♥'s: xyyz has more ♥'s than ♀'s, so xyyz ∉ B y consists of ♀'s and ♥'s: xyyz may have same number of ♀'s and ♥'s, but some ♥'s will come before some ♀'s, so xyyz ∉ B

Minimum Pumping Length

See Sipser Problem 1.55

- The Pumping Lemma for Regular Languages states that
 - every $L \in RL$ has a pumping length p, such that
 - every string \in L of length p or more can be pumped.
- If p is a pumping length for L, so is any length $\ge p$
- The minimum pumping length for L is the smallest p

- The Pumping Lemma for Regular Languages states that
 - every $L \in RL$ has a pumping length p, such that
 - every string \in L of length p or more can be pumped.
- If p is a pumping length for L, so is any length $\ge p$
- The minimum pumping length for L is the smallest p

Consider language $B = a^*b^*$ $s = \lambda, s \in B, |s| = 0$ but s cannot be pumped (minimum pumping length of B is 1)

Consider language $A = aab^*$ $s1 = aa, s1 \in A, |s1| = 2$ but s1 cannot be pumped (minimum pumping length of A is 3) Unless there is a proof for the minimum pumping length of a language, can only depend on the *existence* of such a value, *not* a specific value itself.

- The Pumping Lemma for Regular Languages states that
 - every $L \in RL$ has a pumping length p, such that
 - every string \in L of length p or more can be pumped.
- If p is a pumping length for L, so is any length $\ge p$
- The minimum pumping length for L is the smallest p

If a language is *not* regular, there is no such guaranteed pumping length.

Using proof by contradiction to show that a language is not regular involves demonstrating that there is no such pumping length.

A variable represents the pumping length and the proof demonstrates a string of that length or greater which does not pump.

- The Pumping Lemma for Regular Languages states that
 - every $L \in RL$ has a pumping length p, such that
 - every string \in L of length p or more can be pumped.
- If p is a pumping length for L, so is any length $\ge p$
- The minimum pumping length for L is the smallest p

- The Pumping Lemma for CF Languages states that
 - every $L \in CFL$ has a pumping length p, such that
 - every string \in L of length p or more can be pumped.
- If p is a pumping length for L, so is any length $\ge p$
- The minimum pumping length for L is the smallest p

If a language is *not* context-free, there is no such guaranteed pumping length.

Using proof by contradiction to show that a language is not context-free involves demonstrating that there is no such pumping length.

A variable represents the pumping length and the proof demonstrates a string of that length or greater which does not pump.