Introduction to the Theory of Computation

Set 5 - Nonregular Languages

Nonregular Languages

So far, we have explored several ways to identify regular languages

- DFA, NFA, GNFA, Regular Grammar, RE

There are many nonregular languages

- $\{0 \mathrm{n} 1 \mathrm{n} \mid \mathrm{n} \geq 0\}$
- $\{101,101001,1010010001, \ldots\}$
- $\{$ w I w has the same number of 0 s and 1s $\}$

How can we tell if a language is not regular?

Property of Regular Languages

All regular languages can be generated by finite automata

States must be reused if the length of a string
is greater than the number of states

If states are reused, there will be repetition

Proof Idea

Consider a string in the language whose length is greater than the number of states in the DFA that recognizes the language. $p=I Q \mid$ the number of states in the DFA If the DFA accepts a string s with $|s| \geq p$, then some state must be entered twice while processing s
"Pigeonhole" principle

Proof Idea

The Pumping Lemma

Theorem:

If A is a regular language, then there is a number p where, if s is any string in A of length at least p, then s may be divided into three pieces, $s=x y z$, satisfying the following conditions 1. for each $\mathrm{i} \geq 0$, $x y^{i z}$ is in A
2. $|y|>0$, and 3. $|x y| \leq p$
p is called the pumping length of the language

Proof Idea

Consider a pumping length equal to the number of states in the DFA whose language is A
pumping length = IQI
If A accepts a string s with $|s| \geq I Q \mid$, then some state must be entered twice while processing s
"Pigeonhole" principle

$$
\begin{aligned}
& s=x y z \\
& \text { 1. for each } i \geq 0, x y i z \text { is in } A \\
& \text { 2. }|y|>0 \text {, and } \\
& \text { 3. }|x y| \leq p
\end{aligned}
$$

Proof Idea

1. for each $i \geq 0, x y^{i z}$ is in A
2. $|y|>0$, and
3. $|x y| \leq p$

Using the Pumping Lemma

We can use the pumping lemma to prove a language B is not regular

Proof by contradiction

- Assume B is regular with pumping length p
- Find a string $w \in B$ with $|w| \geq p$
- Show that the pumping lemma is not satisfied
- Show that any xyz cannot satisfy all of the properties of the pumping lemma (cannot be pumped)
- You can choose a specific w, but you cannot choose a specific xyz!

Example

$\mathrm{B}=\left\{\boldsymbol{s b b} \boldsymbol{l} \mid \boldsymbol{s} \in\{\mathrm{a}, \mathrm{b}\}^{*}\right\}$
Assume B is regular and p is the pumping length of B
Consider the string w = apbbap
$w \in B$ and $I w I \geqq p$ so the pumping lemma applies

$$
\mathrm{w}=x y z, \quad|x y| \leq p, \quad|y|>0, \quad x y^{i z} \in B \forall i
$$

Example

Consider the string w = apbbap
$w \in B$ and $\mid w I \geq p$ so pumping lemma applies

$$
\mathrm{w}=x y z, \quad|x y| \leq p, \quad|y|>0, \quad x y^{i z} \in B \forall i
$$

Since $|x y| \leq p$ and w begins with $x y$, $x y=a^{k}$ for some $\mathrm{k} \leq \mathrm{p}$

- $y=a^{j}$ for some $j=1,2, \ldots, k$
$x y^{2} z=a^{p+j} b_{b a}{ }^{p} \notin B$
- Pumping lemma is contradicted, so B is not regular

Proof of Pumping Lemma Let A be any regular language

Find DFA $M=\left(\mathbf{Q}, \Sigma, \delta, \mathbf{q}_{0}, F\right)$ with $L(M)=A$

Let $\mathrm{p}=\mathrm{IQ} \mid$

Let $s=\mathrm{s}_{1} \mathrm{~s}_{2} \mathrm{~s}_{3} \ldots \mathrm{~s}_{\mathrm{n}}$ be any string in A with $|s|=n \geq p$

Proof of Pumping Lemma (cont'd) $\mathrm{p}=|\mathrm{Q}| \quad s=\mathrm{s}_{1} \mathrm{~s}_{2} \mathrm{~s}_{3} \ldots \mathrm{~s}_{\mathrm{n}} \in A \quad|s|=\mathrm{n} \geq \mathrm{p}$

Let $r_{1}, r_{2}, r_{3}, \ldots, r_{n+1}$ be the sequence of states entered while processing s

$$
\begin{aligned}
& r_{1}=q_{0} \\
& r_{n+1} \in \mathbf{F} \\
& r_{i+1}=\delta\left(r_{i}, s_{i}\right)
\end{aligned}
$$

Proof of Pumping Lemma (cont'd) $\mathrm{p}=|\mathrm{Q}| \quad s=\mathrm{s}_{1} \mathrm{~s}_{2} \mathrm{~s}_{3} \ldots \mathrm{~s}_{\mathrm{n}} \in A \quad|s|=\mathrm{n} \geq \mathrm{p}$ $\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}, \ldots, \mathbf{r}_{\mathbf{n + 1}} \quad \mathbf{r}_{1}=\mathbf{q}_{0} \quad \mathbf{r}_{\mathrm{n}+1} \in \mathbf{F} \quad \mathbf{r}_{\mathbf{i}+1}=\delta\left(\mathbf{r}_{\mathbf{i}}, \mathbf{s}_{\mathbf{i}}\right)$

Consider the first p+1 elements of this sequence
$\mathrm{p}+1$ states must contain a repeated state
Let r_{k} be the first state to be repeated and let r_{t} be the second occurrence of this state $\mathrm{t} \leq \mathrm{p}+1$

Proof of Pumping Lemma (cont'd)

$t \leq p+1 \quad p=1 Q\left|\quad s=s_{1} s_{2} s_{3}, \ldots s_{n} \in A \quad\right| s \mid=n \geq p$
Let $x=s_{1} \mathbf{s}_{2} \ldots \mathbf{s}_{k-1}$

$$
r_{1}, r_{2}, r_{3}, \ldots, r_{n+1} \quad \mathbf{r}_{1}=q_{0} \quad r_{n+1} \in F \quad r_{i+1}=\delta\left(r_{i}, s_{i}\right)
$$

$$
\begin{aligned}
& y=s_{k} s_{k+1} \ldots s_{t-1} \\
& z=s_{t} s_{t+1} \ldots s_{n}
\end{aligned}
$$

- x takes M from r_{1} to r_{k} If $k=1$, then $x=\varepsilon$
- y takes M from r_{k} to r_{t}
- z takes M from r_{t} to r_{n+1},
which is an accept state
Since r_{k} and r_{t} are the same state, M must accept $\boldsymbol{x} y^{i z}$ for any $\mathbf{i}=\mathbf{0}, \mathbf{1}, 2, \ldots$

Proof of Pumping Lemma (cont'd)

Have we satisfied the conditions of the

 theorem?1. for each $i \geq 0, x y^{i z}$ is in A
-Yes
2. $|y|>0$

- Yes, since $t>k$ and $y=s_{k} s_{k+1} \ldots s_{t-1}$

3. $|x y| \leq p$
-Yes, since $\mathrm{t} \leq \mathrm{p}+1$ and $x y=\mathrm{s}_{1} \mathrm{~s}_{2} \ldots \mathrm{~s}_{\mathrm{t}-1}$

Regular Languages - Summary

Let R be any language. The following are equivalent:

1. R is a regular language
2. $R=L(M)$ for some finite automaton M, where M is a DFA, an NFA, or a GNFA
3. R is described by some regular grammar
4. R is described by some regular expression

If R can be shown not to have a finite pumping length, then \mathbf{R} is not regular.

Pumping Lemma Example Use

$$
B=\left\{n n^{n} \mid n \geq 0\right\}
$$

Assume B is regular. Let p be the pumping length given by the lemma.

Consider the string $s={ }_{c} p$
$s \in B$ and $|s| \geq p$ so the pumping lemma guarantees that s can be split into three pieces

$$
s=x y z, \quad|x y| \leq p, \quad|y|>0, \quad x y i z \in B \forall i
$$

$B=\left\{{ }^{n} n^{n} \mid n \geq 0\right\}$

Pumping Lemma Example

Cases to consider

- The string y consists only of ...'s.
- Fhe string y-eonsists-only-of (is.

$$
\begin{aligned}
& s={ }_{l}^{p}{ }^{p} \\
& s=x y z
\end{aligned}
$$

$|x y| \leq p$

- Fhe-string y-consists of both \%o.s and w's.
y consists only of e.s:
$x y y z$ has more 's than so $x y y z \notin B$
y consists only of
$x y y z$ has more 's than 's, so $x y y z \notin B$
y consists of $\xlongequal{6}$'s and
xyyz may have same number of ...'s and $\mathbb{*}$'s, but
some 's will come before some 's, so xyyz $\notin \mathrm{B}$

Minimum Pumping Length

See Sipser Problem 1.55

- The Pumping Lemma for Regular Languages states that
- every $L \in R L$ has a pumping length p, such that
- every string $\in L$ of length p or more can be pumped.
- If p is a pumping length for L, so is any length $\geq p$
- The minimum pumping length for L is the smallest p
- The Pumping Lemma for Regular Languages states that
- every $L \in R L$ has a pumping length p, such that
- every string $\in L$ of length p or more can be pumped.
- If p is a pumping length for L, so is any length $\geq p$
- The minimum pumping length for L is the smallest p

Consider language $B=a^{*} b^{*}$

$$
s=\lambda, s \in B,|s|=0
$$

but s cannot be pumped (minimum pumping length of B is 1)

Consider language $\mathrm{A}=\mathrm{aab} *$

$$
s 1=a a, s 1 \in A,|s 1|=2
$$

but s1 cannot be pumped (minimum pumping length of A is 3)

Unless there is a proof for the minimum pumping length of a language, can only depend on the existence of such a value, not a specific value itself.

- The Pumping Lemma for Regular Languages states that
- every $L \in R L$ has a pumping length p, such that
- every string $\in L$ of length p or more can be pumped.
- If p is a pumping length for L, so is any length $\geq p$
- The minimum pumping length for L is the smallest p

If a language is not regular, there is no such guaranteed pumping length.

Using proof by contradiction to show that a language is not regular involves demonstrating that there is no such pumping length.

A variable represents the pumping length and the proof demonstrates a string of that length or greater which does not pump.

- The Pumping Lemma for Regular Languages states that
- every $L \in R L$ has a pumping length p, such that
- every string $\in L$ of length p or more can be pumped.
- If p is a pumping length for L, so is any length $\geq p$
- The minimum pumping length for L is the smallest p
- The Pumping Lemma for CF Languages states that
- every $L \in C F L$ has a pumping length p, such that
- every string $\in L$ of length p or more can be pumped.
- If p is a pumping length for L, so is any length $\geq p$
- The minimum pumping length for L is the smallest p

If a language is not context-free, there is no such guaranteed pumping length.

Using proof by contradiction to show that a language is not context-free involves demonstrating that there is no such pumping length.

A variable represents the pumping length and the proof demonstrates a string of that length or greater which does not pump.

