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Equivalence of RE’s and DFA’s
We have seen that every RE has a 
corresponding NFA

• Therefore, every RE has a corresponding DFA
• Thus every RE describes a regular language

We need to show that every regular 
language can be described by a RE
Begin by showing how to convert all DFA’s 
into GNFA’s

• Generalized Nondeterministic Finite Automata
JFLAP uses a Generalized Transition Graph (GTG)



GNFA’s
A GNFA is an NFA with the following 
properties:

• The start state has transition arrows going to 
every other state, but no arrows coming in 
from any other state

• There is exactly one accept state and there is 
an arrow from every other state to this state, 
but no arrows to any other state from the 
accept state

• The start state is not the accept state



GNFA’s (continued)
A GNFA is an NFA with the following 
properties:

• Except for the start and accept states, one 
arrow goes from every state to every other 
state and also from each state to itself

• Instead of being labeled with symbols from the 
alphabet, transitions are labeled with regular 
expressions
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Equivalence of DFA’s and RE’s
First show every DFA can be converted into 
a GNFA that accepts the same language
Then show that any GNFA has a 
corresponding RE that represents the same 
language



Converting a DFA into a GNFA
Add two new states

• New start state with an ε jump to the original 
DFA’s start state

• New accept state with an ε jump from each of 
the original DFA’s accept states
• This new state will be the only accept state

All transitions labeled with multiple labels 
are relabeled with the union of the previous 
labels
All pairs of states without transitions get a 
transition labeled ∅



Converting a DFA to a GNFA
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Converting a DFA to a GNFA

Add two new states
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Converting a DFA to a GNFA
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All transitions with multiple labels are 
relabeled with the union of the 
previous labels
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Converting a DFA to a GNFA
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Converting a DFA to a GNFA
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The resulting state diagram is a GNFA
– All GNFA properties are satisfied
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Converting a DFA to a GNFA
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Converting a GNFA to a RE
If the GNFA has exactly two states, then the 
label connecting the states is the RE
Otherwise, remove one state at a time 
without changing the language accepted by 
the machine until the GNFA has two states



Removing One State From a GNFA
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Accounting for Loops
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Every DFA has a corresponding RE
Proof: Let M be any DFA and let w be any 

string in Σ*.  Convert M to G, a GNFA, then 
convert G to R, a regular expression. 

Want to show w∈L(M) ⇔ w∈L(R).  

First show w∈L(M) ⇔ w∈L(G).  

Then show w∈L(G) ⇔ w∈L(R).



w∈L(M) ⇒ w∈L(G)
Assume w∈L(M) and w = w1w2…wn, where 
each wi ∈ Σ.  Then there is a sequence of 
states q1, q2, …, qn+1 such that

 q1 = q0

 qn+1∈F
 qi+1 = δ(qi,wi) for each i = 1, 2, …, n

When w is read by G, the sequence of 
states qs, q1, q2, …, qn+1, qt would accept w

 w∈L(G)



w∈L(M) ⇐ w∈L(G)
Assume w∈L(G) and w = w1w2…wn, where 
each wi∈Σ.  Then there is a sequence of 
states qs, q1, q2, …, qn+1, qt such that

 q1 = q0

 qn+1∈F
 qi+1 = δ(qi,wi) for each i = 1, 2, …, n

When w is read by M, the sequence of 
states q1, q2, …, qn+1 would accept w

 w∈L(M)



w∈L(G) ⇔ w∈L(R)
Prove by induction on number of states in G
Base case: If G has 2 states then clearly  

w∈L(G) ⇔ w∈L(R).

Induction step:
Assume w∈L(G) ⇔ w∈L(R) 

for every G with k-1 states.
Prove w∈L(G) ⇔ w∈L(R) 

for every G with k states.



Assume w∈L(G) and an accepting branch of the 
computation G enters on w is qs, q1, q2, …, qt. 
Let G’ be the GNFA that results from removing 
one of G’s states, qrip.  
There are two possibilities:

Case 1: 
qrip is never entered in the computation of w.

Then the same branch of computation exists in G’.

w∈L(R) if w∈L(G)



w∈L(R) if w∈L(G)
Assume w∈L(G) and an accepting branch of the 

computation G enters on w is qs, q1, q2, …, qt. 
Let G’ be the GNFA that results from removing 
one of G’s states, qrip. 
There are two possibilities:

Case 2: qrip is entered in the computation of w 
(bracketed by qi and qj).
Then the new transition between qi and qj in G’ 
describes the computation that could be done 
on the computation of w through the branch 
qi, qrip, qj.



w∈L(R) if w∈L(G)
Assume w∈L(G) and an accepting branch of the 

computation G enters on w is qs, q1, q2, …, qt. 
Let G’ be the GNFA that results from removing 
one of G’s states, qrip. 
There are two possibilities:

Case 1: 
qrip is never entered in the computation of w.

Case 2: qrip is entered in the computation of w.

So G’ accepts w.

By induction, w∈L(R).



w∈L(G) if w∈L(R)
Assume w∈L(R).
By induction hypothesis, w∈L(G’), 

the k-1 state GNFA resulting from 
removing one state from G.

By construction, any computation in 
G’ can also be done in G — 
possibly going through an extra 
state qrip.

Therefore, w∈L(G).
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1

q1 q2

1

0

0

qs qt

Step 1: Add two new states
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Example
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Step 2: Remove q1

1*0
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Step 3: Remove q2

1*0(1∪01*0)*
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Example
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Is equivalent to the regular 
expression 1*0(1∪01*0)*
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Regular Languages
We have explored several ways to identify 
regular languages

• Deterministic Finite Automata
• Nondeterministic Finite Automata
• Generalized Nondeterminstic Finite Automata
• Regular Grammars
• Regular Expressions

How can we tell that a language is not regular?


