Introduction to the Theory of Computation

Set 4 - Regular Languages (3)

Equivalence of RE's and DFA's

We have seen that every RE has a corresponding NFA

- Therefore, every RE has a corresponding DFA
- Thus every RE describes a regular language

We need to show that every regular language can be described by a RE Begin by showing how to convert all DFA's into GNFA's

- Generalized Nondeterministic Finite Automata JFLAP uses a Generalized Transition Graph (GTG)

GNFA's

A GNFA is an NFA with the following properties:

- The start state has transition arrows going to every other state, but no arrows coming in from any other state

- There is exactly one accept state and there is an arrow from every other state to this state, but no arrows to any other state from the accept state
- The start state is not the accept state

GNFA's (continued)

A GNFA is an NFA with the following

 properties:- Except for the start and accept states, one arrow goes from every state to every other state and also from each state to itself
- Instead of being labeled with symbols from the alphabet, transitions are labeled with regular expressions

Example GNFA

Equivalence of DFA's and RE's

First show every DFA can be converted into a GNFA that accepts the same language

Then show that any GNFA has a corresponding RE that represents the same language

Converting a DFA into a GNFA

Add two new states

- New start state with an ε jump to the original DFA's start state
- New accept state with an ε jump from each of the original DFA's accept states
- This new state will be the only accept state

All transitions labeled with multiple labels are relabeled with the union of the previous labels

All pairs of states without transitions get a transition labeled \varnothing

Converting a DFA to a GNFA

Converting a DFA to a GNFA

Add two new states

Converting a DFA to a GNFA

All transitions with multiple labels are relabeled with the union of the previous labels

Converting a DFA to a GNFA

All pairs of states without transitions
get a transition labeled \varnothing

Converting a DFA to a GNFA

The resulting state diagram is a GNFA

- All GNFA properties are satisfied

Converting a DFA to a GNFA

No step changed the strings accepted by the machine

Converting a GNFA to a RE

If the GNFA has exactly two states, then the label connecting the states is the RE

Otherwise, remove one state at a time without changing the language accepted by the machine until the GNFA has two states

Removing One State From a GNFA

$a_{12}^{\prime} \cup a_{13} a_{33}{ }^{*} a_{32}$
These two portions of GNFA's recognize the same strings

Accounting for Loops

Every DFA has a corresponding RE

Proof: Let M be any DFA and let w be any string in Σ^{*}. Convert M to G, a GNFA, then convert G to R, a regular expression.

Want to show $\mathbf{w} \in \mathrm{L}(\mathrm{M}) \Leftrightarrow \mathbf{w} \in \mathrm{L}(\mathrm{R})$.
First show $\mathbf{w} \in L(M) \Leftrightarrow \mathbf{w} \in L(G)$.
Then show $\mathbf{w} \in L(G) \Leftrightarrow \mathbf{w} \in L(R)$.

$\mathbf{w} \in \mathrm{L}(\mathrm{M}) \Rightarrow \mathbf{w} \in \mathrm{L}(\mathrm{G})$

Assume $w \in L(M)$ and $w=w_{1} w_{2} \ldots w_{n}$, where each $w_{i} \in \Sigma$. Then there is a sequence of states $q_{1}, q_{2}, \ldots, q_{n+1}$ such that

$$
\begin{aligned}
& q_{1}=q_{0} \\
& q_{n+1} \in F
\end{aligned}
$$

$$
\mathbf{q}_{i+1}=\delta\left(\mathbf{q}_{i}, \mathbf{w}_{\mathrm{i}}\right) \text { for each } \mathbf{i}=\mathbf{1}, \mathbf{2}, \ldots, \mathbf{n}
$$

When w is read by G, the sequence of states $q_{s}, q_{1}, q_{2}, \ldots, q_{n+1}, q_{t}$ would accept w $\mathbf{w} \in \mathrm{L}$ (G)

$\mathbf{w} \in \mathrm{L}(\mathrm{M}) \Leftarrow \mathbf{w} \in \mathrm{L}(\mathrm{G})$

Assume $w \in L(G)$ and $w=w_{1} w_{2} \ldots w_{n}$, where each $w_{i} \in \Sigma$. Then there is a sequence of states $q_{s}, q_{1}, q_{2}, \ldots, q_{n+1}, q_{t}$ such that

$$
\begin{aligned}
& \mathbf{q}_{1}=\mathbf{q}_{0} \\
& \mathbf{q}_{n+1} \in F \\
& \mathbf{q}_{i+1}=\delta\left(\mathbf{q}_{i}, w_{i}\right) \text { for each } i=1,2, \ldots, n
\end{aligned}
$$

When w is read by M , the sequence of states $q_{1}, q_{2}, \ldots, q_{n+1}$ would accept w $w \in L(M)$

$\mathbf{w} \in \mathrm{L}(\mathrm{G}) \Leftrightarrow \mathbf{w} \in \mathrm{L}(\mathrm{R})$

Prove by induction on number of states in \mathbf{G}
Base case: If \mathbf{G} has 2 states then clearly $\mathbf{w} \in \mathrm{L}(\mathrm{G}) \Leftrightarrow \mathbf{w} \in \mathrm{L}(\mathrm{R})$.

Induction step:
Assume $\mathbf{w} \in \mathbf{L}(\mathbf{G}) \Leftrightarrow \mathbf{w} \in \mathbf{L}(\mathbf{R})$
for every \mathbf{G} with \mathbf{k}-1 states.
Prove $\mathbf{w} \in \mathrm{L}(\mathrm{G}) \Leftrightarrow \mathbf{w} \in \mathbf{L}(\mathrm{R})$
for every G with k states.

$\mathbf{w} \in \mathbf{L}(\mathbf{R})$ if $\mathbf{w} \in \mathbf{L}(\mathbf{G})$

Assume $w \in L(G)$ and an accepting branch of the computation G enters on w is $q_{s}, q_{1}, q_{2}, \ldots, q_{t}$.
Let G' be the GNFA that results from removing
one of G's states, $\mathrm{q}_{\text {rip }}$.
There are two possibilities:
Case 1:
$q_{\text {rip }}$ is never entered in the computation of w.
Then the same branch of computation exists in G'.

$\mathbf{w} \in \mathbf{L}(\mathbf{R})$ if $\mathbf{w} \in \mathbf{L}(\mathbf{G})$

Assume $w \in L(G)$ and an accepting branch of the computation G enters on w is $q_{s}, q_{1}, q_{2}, \ldots, q_{t}$. Let G' be the GNFA that results from removing one of G's states, $\mathrm{q}_{\text {rip }}$.
There are two possibilities:
Case 2: $q_{\text {rip }}$ is entered in the computation of w (bracketed by q_{i} and q_{j}).
Then the new transition between q_{i} and q_{j} in G' describes the computation that could be done on the computation of w through the branch $q_{i}, q_{\text {rip }}, q_{j}$.

$\mathbf{w} \in \mathbf{L}(\mathbf{R})$ if $\mathbf{w} \in \mathbf{L}(\mathbf{G})$

Assume $w \in L(G)$ and an accepting branch of the computation G enters on w is $q_{s}, q_{1}, q_{2}, \ldots, q_{t}$.
Let G' be the GNFA that results from removing
one of G's states, $\mathrm{q}_{\text {rip }}$.
There are two possibilities:
Case 1:
$q_{\text {rip }}$ is never entered in the computation of w.
Case 2: $\mathrm{q}_{\text {rip }}$ is entered in the computation of $\mathbf{w .}$
So G' accepts w. By induction, $w \in L(R)$.

$\mathbf{w} \in \mathrm{L}(\mathrm{G})$ if $\mathbf{w} \in \mathrm{L}(\mathrm{R})$

Assume w $\in L(R)$.
By induction hypothesis, $w \in L\left(G^{\prime}\right)$, the k-1 state GNFA resulting from removing one state from G.

By construction, any computation in G' can also be done in G possibly going through an extra state $\mathrm{q}_{\text {rip }}$.

Therefore, $w \in L(G)$.

Example

Example

Step 1: Add two new states

Example

Step 2: Remove q_{1}

Example

Step 3: Remove \mathbf{q}_{2}

Example

So this DFA

Is equivalent to the regular expression $1^{*} 0\left(1 \cup 01^{*} 0\right)^{*}$
$1^{*} 0\left(1 \cup 01^{*} 0\right)^{*}$

Regular Languages

We have explored several ways to identify regular languages

- Deterministic Finite Automata
- Nondeterministic Finite Automata
- Generalized Nondeterminstic Finite Automata
- Regular Grammars
- Regular Expressions

HOW CAN WE TELL THAT A LANGUAGE IS NOT REGULAR?

