# Introduction to the Theory of Computation 

Set 3 - Regular Languages (2)



Find $M$ such that $L(M)=L\left(M_{1}\right) \cdot L\left(M_{2}\right)$


Nondeterministic Finite Automaton (NFA)

## DFA vs. NFA

Deterministic FA
DFA
Nondeterministic FA

| DFA | NFA |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |

## Computing on an NFA

For each symbol of the string, keep track of all possible transitions in parallel

When input ends, there may be several possible ending states

- If at least one of the possibilities is an accepting state, then the NFA accepts the string


## Example



## Does this NFA accept the string 001?

| From state(s) | Input | To state(s) |
| :--- | :--- | :--- |
|  |  |  |
|  |  |  |
|  |  |  |

## Example



Any string containing two 1's separated by at most one 0

## Example



Zero or more concatenations of the strings $a b a$ and $a b$

## Example



Strings of any length containing at most three of the symbols in $\Sigma=\{a, b, c, d\}$

## The Utility of Non-Determinism

Strings of any length containing at most two of the symbols in $\Sigma=\{a, b, c\}$


NFA
DFA

## Nondeterministic Finite Automaton (NFA)

## [Formal Definition]

A nondeterministic finite automaton is a 5-tuple (Q, $\Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}$ ), where
$Q$ is a finite set of states
$\Sigma$ is a (finite) alphabet
$\delta: Q \times \Sigma_{\varepsilon} \rightarrow \mathscr{P}(\mathrm{Q})$ is the transition function $\delta$ maps to sets of states
$\mathrm{q}_{0}$ is the start state, and
$F \subseteq Q$ is the set of accept states

## Equivalence of DFAs and NFAs

Theorem: Every nondeterministic finite automaton has an equivalent deterministic finite automaton

- Both FAs accept the same language

Proof method

- Construction
- Similar to method used for recognizing strings
- Follow all paths in parallel where states represent parallel paths


## Proof Idea

Given NFA $M_{1}=\left(\mathbf{Q}, \Sigma, \delta, q_{0}, F\right)$ construct DFA $M_{2}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}{ }^{\prime}, F^{\prime}\right)$ with $L\left(M_{1}\right)=L\left(M_{2}\right)$

## Intuition

- Recall $\delta: \mathbf{Q} \times \Sigma_{\varepsilon} \rightarrow \mathbb{P}(\mathbf{Q})$
- Our DFA's transition function will generate paths within $P(\mathbf{Q})$

$$
\delta^{\prime}: \mathscr{P}(\mathbf{Q}) \times \Sigma \rightarrow \mathscr{P}(\mathbf{Q})
$$

## Defining $\mathrm{M}_{2}$

Determine Q', $q_{0}$, and $F^{\prime}$

- $\mathbf{Q}^{\prime}=\mathscr{P}(\mathbf{Q})$
- $q_{0}{ }^{\prime}=\left\{q_{0}\right\}$
- $F^{\prime}=\left\{R \in Q^{\prime} \mid R \cap F \neq \varnothing\right\}$

R contains at least one of $M_{1}$ 's accept states
Defining $\delta^{\prime}$

$$
\delta^{\prime}(R, a)=\bigcup_{r \in R} \delta(r, a)
$$

(ignoring $\varepsilon$ jumps for now)

## Collaborative Exercise

## For each NFA

- Informally describe the behavior of the NFA
- Construct a DFA accepting the same language

NFA 1

$$
\Sigma=\{0,1\}
$$



NFA 2

$$
\Sigma=\{0,1\}
$$



NFA 3

$$
\Sigma=\{0,1\}
$$



NFA 4

$$
\Sigma=\{0,1\}
$$



NFA 5

$$
\Sigma=\{0,1\}
$$



NFA 6

$$
\Sigma=\{0,1\}
$$



## Closure of NFA's Under Regular Operations

## Recall the following are the regular operators

- Union
- Concatenation
- Kleene star


## Union is a Regular Operation

Theorem: The class of regular languages is closed under the union operation
Proof approach: Assume $A_{1}$ and $A_{2}$ are both regular languages with $A_{1}=L\left(M_{1}\right)$ and $A_{2}=L\left(M_{2}\right)$ then create an NFA M such that $L(M)=A_{1} \cup A_{2}$
Method: Proof by construction

## Construct M from $\mathrm{M}_{1}$ and $\mathrm{M}_{2}$



## Concatenation is a regular operation

Theorem: The class of regular languages is closed under the concatenation operation
Proof approach: Assume $A_{1}$ and $A_{2}$ are both regular languages with $A_{1}=L\left(M_{1}\right)$ and $A_{2}=L\left(M_{2}\right)$ then create an NFA M such that $L(M)=A_{1} \cdot A_{2}$
Method: Proof by construction

## Construct M from $\mathrm{M}_{1}$ and $\mathrm{M}_{2}$



M

## Kleene Star Is a Regular Operation

Theorem: The class of regular languages is closed under the Kleene star operation
Proof approach: Assume $A_{1}$ is a regular language with $A_{1}=L\left(M_{1}\right)$ and create an NFA M such that $L(M)=A_{1}{ }^{*}$
Method: Proof by construction

## Construct M from $\mathrm{M}_{1}$



## Regular Languages

So far we have had to describe languages either with finite automata or with words

- Potentially clumsy or imprecise

Two other formal expressions that describe regular languages

- Regular Grammars
- Regular Expressions


## Formal Grammars

## Formal grammars contain a set of

 production rules for strings in a language. The rules describe how to form valid strings under the language's alphabet.Example: $\{S \rightarrow a b A, S \rightarrow a, A \rightarrow a A, A \rightarrow b\}$

## Formal Grammars

A formal grammar includes a set of rules for rewriting strings and a specified start symbol from which rewriting starts.

The set of variables, also known as nonterminals, will be written using capital letters to be consistent with JFLAP.

One of the variables is distinguished as the start symbol.
The members of the alphabet $\Sigma$ are also known as terminals.

## Formal Grammars

## Example:

$$
\begin{aligned}
\Sigma \Sigma & =\{\mathbf{a}, \mathbf{b}\} \text { (a.k.a terminals) } \\
\text { variables } & =\{\mathbf{S}, \mathbf{A}, \mathrm{B}\} \text { (a.k.a non-terminals) } \\
\text { start symbol } & =\mathrm{S} \\
\text { rules } & =\{\mathrm{S} \rightarrow \mathbf{a b} \mathbf{A}, \mathrm{~S} \rightarrow \mathbf{a}, \mathbf{A} \rightarrow \mathbf{a A}, \mathbf{A} \rightarrow \mathbf{b}\}
\end{aligned}
$$

A derivation of the string abaab:

$$
S \rightarrow \text { abA } \rightarrow \text { abaA } \rightarrow \text { abaaA } \rightarrow \text { abaab }
$$

## Regular Grammars

Regular grammars are another representation of regular languages.

- They are equivalent in power to DFAs and NFAs.

A right-linear grammar is a type of regular grammar.

In a right-linear grammar all rules must have at most one variable in the right-hand side and that variable must be to the right of any terminals.

## Regular Grammars

In a right-linear grammar all rules must have at most one variable in the right-hand side and that variable must be to the right of any terminals.
Example:

$$
\Sigma=\{0,1\}
$$

$$
\text { variables }=\{\mathbf{S}, \mathbf{X}, \mathbf{Y}\}
$$

start symbol = S

$$
\begin{aligned}
\text { rules }=\{\mathrm{S} & \rightarrow 0 \mathrm{X}, \\
\mathrm{~S} & \rightarrow 1 \mathrm{X} \\
\mathrm{~S} & \rightarrow 0 \mathrm{Y} \\
\mathrm{X} & \rightarrow 01 \mathrm{Y}, \\
\mathrm{Y} & \rightarrow 1 \mathrm{X}, \\
\mathrm{Y} & \rightarrow \boldsymbol{\lambda}\}
\end{aligned}
$$

## Regular Expressions (RE's)

Thus far we have described languages using finite automata, English words, and regular grammars

There is another precise and parsimonious expression to describe regular languages

- Example: All strings with at least one 1 becomes $\Sigma^{*} \cdot\{1\} \cdot \Sigma^{*}$, or more simply $\Sigma^{*} 1 \Sigma^{*}$


## Where have you seen RE's?

## Filename matching

 Is *.txt rm data1??.bakGrep, Awk, Sed, ...
Search expressions within text editors
Perl, Java, C++, ...

## RE Inductive Definition

$R$ is a regular expression if $R$ is

1. a for some $\mathbf{a} \in \Sigma$
2. $\varepsilon$

3. $\varnothing$
4. $R_{1} \cup R_{2}$ where $R_{1}$ and $R_{2}$ are both regular expressions
5. $R_{1} \cdot R_{2}$ where $R_{1}$ and $R_{2}$ are both regular expressions (written $R_{1} R_{2}$ )
6. ( $R_{1}{ }^{*}$ ) where $R_{1}$ is a regular expression

## RE Examples

$$
\Sigma=\{0,1\}
$$

When appearing in regular expressions, union is often read as "or".

$$
(\mathbf{a} u \mathbf{b}) \equiv \text { "a or b" }
$$

JFLAP uses the plus symbol for union $\mathbf{a b a}(\mathbf{b} \cup \mathbf{a}) \mathbf{b} \equiv \operatorname{aba}(\mathrm{b}+\mathrm{a}) \mathrm{b}$

## RE's and Regular Languages

Theorem: A language is regular if and only if some regular expression describes it.

Every regular expression has a corresponding DFA and vice versa.

## RE's and Regular Languages

## Lemma:

If a language is described by a regular expression, then it is regular.

- Find an NFA corresponding to any regular expression
- Use inductive definition of RE's


## 1. $\mathbf{R}=\mathbf{a}$ for some $\mathbf{a} \in \Sigma$


$N=\left\{\left\{q_{1}, q_{2}\right\}, \Sigma, \delta, q_{1},\left\{q_{2}\right\}\right\}$
where $\delta\left(q_{1}, a\right)=\left\{q_{2}\right\}$ and $\delta(r, x)=\varnothing$ whenever $r=q_{2}$ or $x \neq a$

## 2. $R=\varepsilon$


$\mathbf{N}=\left\{\left\{q_{1}\right\}, \Sigma, \delta, q_{1},\left\{q_{1}\right\}\right\}$
where $\delta\left(q_{1}, x\right)=\varnothing$ for all $x$

## 3. $\mathrm{R}=\varnothing$


$\mathbf{N}=\left\{\left\{\mathbf{q}_{1}\right\}, \Sigma, \mathbf{\delta}, \mathbf{q}_{1}, \varnothing\right\}$
where $\delta\left(q_{1}, x\right)=\varnothing$ for all $x$

## Remaining Constructions

$$
\begin{aligned}
& \mathrm{R}=\mathrm{R}_{1} \cup \mathrm{R}_{2} \\
& \mathrm{R}=\mathrm{R}_{1} \cdot \mathrm{R}_{2} \\
& \mathrm{R}=\mathrm{R}_{1}{ }^{*}
\end{aligned}
$$

These were all shown to be regular operators

- We know we can construct NFA's for R provided they exist for $\mathbf{R}_{1}$ and $\mathbf{R}_{\mathbf{2}}$


## Example 1

$$
\Sigma=\{0,1\}
$$

## $\mathrm{R}=\Sigma 1$

$R=(0 \cup 1) 1$

$R=\Sigma 1$


## Example 2

$$
\Sigma=\{0,1\}
$$

## $R=1(0 \cup \varepsilon) \Sigma^{*}$

$$
R_{1}=1
$$



## Equivalence of RE's and DFA's

We have seen that every RE has a corresponding NFA

- Therefore, every RE has a corresponding DFA
- Thus every RE describes a regular language

We need to show that every regular language can be described by a RE
Begin by showing how to convert all DFA's into GNFA's

- Generalized Nondeterministic Finite Automata

