Artificial
Neural Networks

Why Artificial Neural Networks?

There are two basic reasons why we are interested in
building artificial neural networks (ANNs):

Technical viewpoint: Some problems such as
character recognition or the prediction of future
states of a system require massively parallel and
adaptive processing.

Biological viewpoint: ANNs can be used to
replicate and simulate components of the human
(or animal) brain, thereby giving us insight into
natural information processing.

How do NNs and ANNs work?

The “building blocks” of neural networks are the

neurons.

In technical systems, we also refer to them as units

or nodes.

Basically, each neuron

— receives input from many other neurons,

— changes its internal state (activation) based on
the current input,

— sends one output signal to many other neurons,
possibly including its input neurons (recurrent
network)

Computers vs. Neural Networks
“Standard” Computers Neural Networks

one CPU highly parallel
processing

fast processing units slow processing units

reliable units unreliable units

static infrastructure dynamic infrastructure

Why Artificial Neural Networks?

Why do we need another paradigm than symbolic Al
for building “intelligent” machines?

Symbolic Al is well-suited for representing explicit
knowledge that can be appropriately formalized.

However, learning in biological systems is mostly
implicit — it is an adaptation process based on
uncertain information and reasoning.

ANNSs are inherently parallel and work extremely
efficiently if implemented in parallel hardware.

How do NNs and ANNs work?

Information is transmitted as a series of electric
impulses, so-called spikes.

The frequency and phase of these spikes encodes
the information.

In biological systems, one neuron can be
connected to as many as 10,000 other neurons.

Usually, a neuron receives its information from
other neurons in a confined area, its so-called
receptive field.

How do NNs and ANNs work?

+ In biological systems, neurons of similar
functionality are usually organized in separate
areas (or layers).

Often, there is a hierarchy of interconnected layers
with the lowest layer receiving sensory input and

neurons in higher layers computing more complex
functions.

For example, neurons in macaque visual cortex
have been identified that are activated only when
there is a face (monkey, human, or drawing) in the
macaque’s visual field.

otlo percepto WP P MSTI FST PITd

I anA
S il v g

Receptive Fields in Hierarchical Neural Networks

_neuron A

‘ . - receptive field of A
April 2, 2003 ntroduction to Artificial Intelligenc
Lecture 13: Neural Network Basics

Receptive Fields in Hierarchical Neural Networks

neuron A
in top layer

r‘eceptive field of A in input layer
April 2, 2003 Introduction to Artificial Intelligenc 10
Lecture 13: Neural Network Basics

How do NNs and ANNs work?

» NNs are able to learn by adapting their
connectivity patterns so that the organism
improves its behavior in terms of reaching certain
(evolutionary) goals.

The strength of a connection, or whether it is
excitatory or inhibitory, depends on the state of a
receiving neuron’s synapses.

The NN achieves learning by appropriately
adapting the states of its synapses.

Do You Remember Threshold Logic Units?

:

f(x,%,00x,) =1, if 2,\-,.w,.29

=0, otherwise

An Artificial Neuron
synapses

neuron i

net input signal net, (¢) = E w;(t)o;(2)
=1

activation a,(t) = F.(a;(t-1),net,(¢))

output (HOENACAG))

The Net Input Signal

In most ANNS, the activation of a neuron is simply defined to
equal its net input signal:

a,(t) = net, (i)

Then, the neuron’s activation function (or output
function) f; is applied directly to net;(t):

0,(t) = f;(net, (1))

What do such functions f; look like?

Capabilities of Threshold Neurons

What can threshold neurons do for us?
To keep things simple, let us consider such a neuron with two
inputs:

The computation of this neuron can be described as
the inner product of the two-dimensional vectors o
and w;, followed by a threshold operation.

The Net Input Signal

The net input signal is the sum of all inputs after passing the
synapses:

n

net,(7) = E w;(t)o;(2)

=l

This can be viewed as computing the inner product
of the vectors w; and o:

net;(t) =|| w, (@) || - || o(?) || -cos e,

where a is the angle between the two vectors.

The Activation Function

One possible choice is a threshold function, just like the one
we used in the Threshold Logic Units:

fi(net,())=1, if net,(1)=6
=0, otherwise

The graph of this function looks like this:
fi(neti(t))

Capabilities of Threshold Neurons

Let us assume that the threshold 6 = 0 and illustrate the
function computed by the neuron for sample vectors w; and o:

second vector component

Since the inner product is positive for -90° < a < 90°, in this
example the neuron’s output is 1 for any input vector o to the
right of or on the dotted line, and 0 for any other input vector.

Capabilities of Threshold Neurons Capabilities of Threshold Neurons

By choosing appropriate weights w; and threshold 6
we can place the line dividing the input space into

regions of output 0 and output 1in any position and Just like Threshold Logic Units, we can also combine multiple
orientation. artificial neurons to form networks with increased capabilities.

What do we do if we need a more complex function?

Therefore, our threshold neuron can realize any For example, we can build a two-layer network with any.

linearly separable function R? — {0, 1. number of neurons in the first layer giving input to a single
neuron in the second layer.

Although we only looked at two-dimensional input, our

findings apply to any dimensionality n. The neuron in the second layer could, for example, implement

an AND function.
For example, for n = 3, our neuron can realize any

function that divides the three-dimensional input

space along a two-dimension plane.

Capabilities of Threshold Neurons Capabilities of Threshold Neurons

04 Assume that the dotted lines in the diagram represent the input-dividing
O lines implemented by the neurons in the first layer:

0

01 2" comp.
O

0,

01

~
st
Q A 1st comp.

Then, for example, the second-layer neuron could output 1 if
What kind of function can such a network realize? the input is within a polygon, and 0 otherwise.

02

Capabilities of Threshold Neurons Capabilities of Threshold Neurons

G o . O
However, we still may want to implement functions !

that are more complex than that. 0,
An obvious idea is to extend our network even further. o,

Let us build a network that has three layers, with
arbitrary numbers of neurons in the first and second
layers and one neuron in the third layer.

0,

The first and second layers are completely
connected, that is, each neuron in the first layer O

sends its output to every neuron in the second layer. o
2

What type of function can a three-layer network realize?

Capabilities of Threshold Neurons

Assume that the polygons in the diagram indicate the input regions for
which each of the second-layer neurons yields output 1:

2" comp.

—
15t comp.

Then, for example, the third-layer neuron could output 1 if the
input is within any of the polygons, and 0 otherwise.

Terminology

Usually, we draw neural networks in such a way that
the input enters at the bottom and the output is
generated at the top.

Arrows indicate the direction of data flow.
The first layer, termed input layer, just contains the
input vector and does not perform any computations.

The second layer, termed hidden layer, receives
input from the input layer and sends its output to the
output layer.

After applying their activation function, the neurons in
the output layer contain the output vector.

Linear Neurons

Obviously, the fact that threshold units can only
output the values 0 and 1 restricts their applicability to
certain problems.

We can overcome this limitation by eliminating the
threshold and simply turning f; into the identity.
function so that we get:

0,(t) =net ()
With this kind of neuron, we can build networks with

m input neurons and n output neurons that compute a
function f: R™ — R".

Capabilities of Threshold Neurons

The more neurons there are in the first layer, the
more vertices can the polygons have.

With a sufficient number of first-layer neurons, the
polygons can approximate any given shape.

The more neurons there are in the second layer, the
more of these polygons can be combined to form the
output function of the network.

With a sufficient number of neurons and appropriate
weight vectors w;, a three-layer network of threshold
neurons can realize any (!) function R" — {0, 1}.

Terminology

Example: Network function f: R®— {0, 1}?

output vector

O @) output layer

@) @) O hidden layer

O O O input layer

input vector

Linear Neurons

Linear neurons are quite popular and useful for applications
such as interpolation.

However, they have a serious limitation: Each neuron
computes a linear function, and therefore the overall network
function f: R™ — R" is also linear.

This means that if an input vector x results in an output vector
y, then for any factor ¢ the input ¢-x will result in the output ¢-y.

Obviously, many interesting functions cannot be realized by
networks of linear neurons.

Gaussian Neurons

Another type of neurons overcomes this problem by using a
Gaussian activation function:

net; (¢)-1

fi(net,(t))=e o

fi(net(t))
1

Sigmoidal Neurons

Sigmoidal neurons accept any vectors of real
numbers as input, and they output a real number
between 0 and 1.

Sigmoidal neurons are the most common type of
artificial neuron, especially in learning networks.

A network of sigmoidal units with m input neurons and
n output neurons realizes a network function
f: Rm — (0,1)"

Supervised Learning in ANNs

In supervised learning, we train an ANN with a set of
vector pairs, so-called exemplars.

Each pair (x, y) consists of an input vector x and a
corresponding output vector y.

Whenever the network receives input x, we would like
it to provide output y.

The exemplars thus describe the function that we
want to “teach” our network.

Besides learning the exemplars, we would like our
network to generalize, that is, give plausible output
for inputs that the network had not been trained with.

Gaussian Neurons

Gaussian neurons are able to realize non-linear functions.

Therefore, networks of Gaussian units are in principle
unrestricted with regard to the functions that they can realize.

The drawback of Gaussian neurons is that we have to make
sure that their net input does not exceed 1.

This adds some difficulty to the learning in Gaussian networks.

Sigmoidal Neurons

5 1
j,.(net,(t)) = 1+ e—(negm—r!r T

fi(neti(t)) =01
1

= 1 nett)

The parameter T controls the slope of the sigmoid function, while the
parameter 6 controls the horizontal offset of the function in a way similar to
the threshold neurons.

Supervised Learning in ANNs

There is a tradeoff between a network’s ability to precisely
learn the given exemplars and its ability to generalize (i.e.,
inter- and extrapolate).

This problem is similar to fitting a function to a given set of
data points.

Let us assume that you want to find a fitting function f:R—R for
a set of three data points.

You try to do this with polynomials of degree one (a straight
line), two, and five.

Supervised Learning in ANNs

/ deg. 2
/

X

Obviously, the polynomial of degree 2 provides the
most plausible fit.

The Backpropagation Network

The backpropagation network (BPN) is the most popular type
of ANN for applications such as classification or function
approximation.

Like any other network using supervised learning, the BPN is
not biologically plausible.

The structure of the network is identical to the one we
discussed before:

» Three (sometimes more) layers of neurons,

» Only feedforward processing:
input layer — hidden layer — output layer,

» Sigmoid activation functions

Learning in the BPN

Before the learning process starts, all weights (synapses) in
the network are initialized with pseudorandom numbers.

We also have to provide a set of training patterns
(egemplars). They can be described as a set of ordered vector
pairs {(xy, Y1), (X2, ¥2), ---, (Xp, Yp)}-

Then we can start the backpropagation learning algorithm.

This algorithm iteratively minimizes the network’s error by
finding the gradient of the error surface in weight-space and
adjusting the weights in the opposite direction (gradient-
descent technigue).

Supervised Learning in ANNs

The same principle applies to ANNs:

If an ANN has too few neurons, it may not have
enough degrees of freedom to precisely
approximate the desired function.

If an ANN has too many neurons, it will learn the
exemplars perfectly, but its additional degrees of
freedom may cause it to show implausible behavior
for untrained inputs; it then presents poor

ability of generalization.

Unfortunately, there are no known equations that
could tell you the optimal size of your network for a
given application; you always have to experiment.

The Backpropagation Network
BPN units and activation functions:

output vector y

0Q - 0,0

HO HO 1O - HO finet)

@) LO . 1,0

input vector x

I
i

Learning in the BPN

Gradient-descent example: Finding the absolute minimum of
a one-dimensional error function f(x):

fi
e T slope: f(xg)

/

Xg X1 = X - M-F(Xg) X

Repeat this iteratively until for some x;, f(x;) is
sufficiently close to 0.

Learning in the BPN

Gradients, of; two-dimensionall functions:

The two-dimensional function in the left diagram is represented by contour
lines in the right diagram, where arrows indicate the gradient of the function
at different locations. Obviously, the gradient is always pointing in the
direction of the steepest increase of the function. In order to find the
function’s minimum, we should always move against the gradient.

Learning in the BPN

4. Compute the error ahm, for all J hidden layer units by using
the formula:

"
S : h S0
OR'/_ = f"(net,)2 O,j,\w,s/.

5. Update the connection-weight values to the hidden
layer by using the following equation:

) = w N
w(t+1) =w,())+nd,x,

Learning in the BPN

The only thing that we need to know before we can
start our network is the derivative of our sigmoid
function, for example, f'(net,) for the output neurons:

f(net,) =
l+e

oy
f'(net,) = M =o0,(1-0,)
onet,

Learning in the BPN

In the BPN, learning is performed as follows:

1. Randomly select a vector pair (x,, y,,) from the training set
and call it (x, y).

. Use x as input to the BPN and successively compute the
outputs of all neurons in the network (bottom-up) until you
get the network output o.

. Compute the error 6°,, for the pattern p across all K output
layer units by using the formula:

O, = (v, —0,) f' (net})

Learning in the BPN

6. Update the connection-weight values to the output
layer by using the following equation:

Wy (1 +1) = w, (1) +10;, f (net})

Repeat steps 1 to 6 for all vector pairs in the training set; this is
called a training epoch.

Run as many epochs as required to reduce the network error
E to fall below a threshold &:

Learning in the BPN

If we choose the type and number of neurons in our
network appropriately, after training the network
should show the following behavior:

If we input any of the training vectors, the network
should yield the expected output vector (with some
margin of error).

If we input a vector that the network has never
“seen” before, it should be able to generalize and
yield a plausible output vector based on its
knowledge about similar input vectors.

Backpropagation Network Variants

The standard BPN network is well-suited for learning static
functions, that is, functions whose output depends only on the
current input.

For many applications, however, we need functions whose
output changes depending on previous inputs (for example,
think of a deterministic finite automaton).

Obviously, pure feedforward networks are unable to achieve
such a computation.

Only recurrent neural networks (RNNs) can overcome this
problem.

A well-known recurrent version of the BPN is the EIman
Network.

The Elman Network

Output Pattern

T A

avA~_ v\

Context Units Input Pattern

The Counterpropagation Network

A simple CPN network with twoe input neurons, three hidden neurons, and
two output neurons can be described as follows:

Output
layer

Hidden
layer

The Elman Network

In comparison to the BPN, the Elman Network has an
extra set of input units, so-called context units.

These neurons do not receive input from outside the
network, but from the network’s hidden layer in a
one-to-one fashion.

Basically, the context units contain a copy of the
network’s internal state at the previous time step.

The context units feed into the hidden layer just like
the other input units do, so the network is able to
compute a function that not only depends on the
current input, but also on the network’s internal state
(which is determined by previous inputs).

The Counterpropagation Network

Another variant of the BPN is the counterpropagation
network (CPN).

Although this network uses linear neurons, it can learn
nonlinear functions by means of a hidden layer of competitive
units.

Moreover, the network is able to learn a function and its
inverse at the same time.

However, to simplify things, we will only consider the
feedforward mechanism of the CPN.

The Counterpropagation Network

The CPN learning process (general form for n input units
and m output units):

1. Randomly select a vector pair (x, y) from the training set.

2. Normalize (shrink/expand to “length” 1) the input vector x by
dividing every component of x by the magnitude ||x||, where

The Counterpropagation Network

. Initialize the input neurons with the normalized vector and
compute the activation of the linear hidden-layer units.

. In the hidden (competitive) layer, determine the unit W with
the largest activation (the winner).

. Adjust the connection weights between W and all' N input-
layer units according to the formula:

H H H
Wy, (€ +1) = wy, () + a(x, —wy, (1))

. Repeat steps 1 to 5 until all training patterns have
been processed once.

The Counterpropagation Network

11. Repeat steps 9 and 10 for each vector pair in the

training set.

12. Repeat steps 8 through 11 until the difference

between the desired and the actual output falls
below an acceptable threshold.

The Counterpropagation Network

The Counterpropagation Network

Repeat step 6 until each input pattern is consistently
associated with the same competitive unit.
Select the first vector pair in the training set (the current
pattern).
Repeat steps 2 to 4 (normalization, competition) for the
current pattern.

. Adjust the connection weights between the winning hidden-
layer unit and all M output layer units according to the
equation:

W (£ +1) = w3, () + B(Y,, = Wy (1)

m

The Counterpropagation Network

Because the input is two-dimensional, each unit in the hidden
layer has two weights (one for each input connection).

Therefore, input to the network as well as weights of hidden-
layer units can be represented and visualized by two-
dimensional vectors.

For the current network, all weights in the hidden layer can be
completely described by three 2D vectors.

The Counterpropagation Network

This diagram shows a sample state of the hidden layer and a sample input In this example, hidden-layer neuron H, wins and, according to the learning
to the network: rule, is moved closer towards the current input vector.

The Counterpropagation Network
After doing this through many epochs and slowly reducing the adaptation
step size a, each hidden-layer unit will win for a subset of inputs, and the
angle of its weight vector will be in the center: of gravity of the angles of:
these inputs.

all input vectors
in the training set

The Counterpropagation Network

Because there are two output neurons, the weights in the output layer that
receive input from the same hidden-layer unit can also be described by 2D
vectors:

The Counterpropagation Network

The training proceeds with decreasing step size (3, and after its termination,
the weight vectors are in the center of gravity of their associated output
vectors:

0 o Output associated with
(W3, wy3)

\
/ (Wi, Wa)
(W1, wy)

The Counterpropagation Network

After the first phase of the training, each hidden-layer neuron
is associated with a subset of input vectors.

The training process minimized the average angle difference
between the weight vectors and their associated input vectors.

In the second phase of the training, we adjust the weights in
the network’s output layer in such a way that, for any winning
hidden-layer unit, the network’s output is as close as possible
to the desired output for the winning unit's associated input
vectors.

The Counterpropagation Network

For each input vector, the output-layer weights that are connected to the
winning hidden-layer unit are made more similar to the desired output
vector:

The Counterpropagation Network
Notice:

= In the first training phase, if a hidden-layer unit does not win for a long
period of time, its weights should be set to random values to give that
unit a chance to win subsequently.

There is no need for normalizing the training output vectors.

After the training has finished, the network maps the training vectors onto
output vectors that are close to the desired ones.

The more hidden units, the better the mapping.

Thanks to the competitive neurons in the hidden layer, the linear neurons
can realize nonlinear mappings.

Interpolative Associative Memory

If we just want to realize a linear function, a simple two-layer
network suffices:

T

"
Ny,

Interpolative Associative Memory

Well, if you look at the network’s output function

N
2 w,.i, for m=1..,M

n=1

you will find that this is just like a matrix multiplication:

Wi Wy . AN U

Wy,

% ,
.| or 0o=Wi

Wi

Interpolative Associative Memory

Example:

Assume that we want to build an interpolative memory with
three input neurons and three output neurons.

We have the following three exemplars (desired input-output
pairs):

1l
l 0

Interpolative Associative Memory

Sometimes it is possible to obtain a training set with
orthonormall (that is, normalized and pairwise
orthogonal) input vectors.

In that case, our two-layer network with linear neurons
can solve its task perfectly and does not even
require training.

We call such a network an interpolative associative
memory.

You may ask: How does it work?

Interpolative Associative Memory

With an orthonormal set of exemplar input vectors (and any.
associated output vectors) we can simply calculate a weight
matrix that realizes the desired function and does not need any
training procedure.

For exemplars (x4, Y1), (X2, ¥5), ..., (Xp, Yp) We obtain the
following weight matrix W:

that an N-dimensional vector space cannot have
a set of more than N orthonormal vectors!

Interpolative Associative Memory

1 0 0 0 0
0 O0f+(0 O
0 0 0 0 8 3

If you set the weights w,,, to these values, the network
will realize the desired function.

Interpolative Associative Memory

So if you want to implement a linear function RN—=RM and can
provide exemplars with orthonormal input vectors, then an
interpolative associative memory is the best solution.

It does not require any training procedure, realizes perfect
matching of the exemplars, and performs plausible
interpolation for new input vectors.

Of course, this interpolation is linear.

